Fig. 1. Basic structure of MMC.
Fig. 2. ABB’S Group Module based MMC.
Fig. 3. Pole voltage of ABB’s MMC using group module topology.
Fig. 4. Single-phase equivalent circuit of MMC.
Fig. 5. MMC Control Diagram with NLC Modulation.
Fig. 6. Output voltage of NLC with small sampling interval.
Fig. 8. Actual implementation of the proposed “Cluster stream buffer” method for MMC.
Fig. 7. Output voltage of NLC with large sampling interval.
Fig. 9. Cluster module based MMC arm.
Fig. 10. Cluster module based MMC controller H/W structure.
Fig. 11. Output voltage level of MMC based VSC-HVDC without cluster stream buffer method.
Fig. 12. Output voltage level of MMC based VSC-HVDC using cluster stream buffer method.
Fig. 13. Simulation result of the proposed algorithm: Cluster stream buffer.
Fig. 14. Simulation result of conventional method. (a) Upper and lower arm voltages, (b) Three phase output current.
Fig. 15. Simulation result of proposed method. (a) Upper and lower arm voltages, (b) Three phase output current.
TABLE I SIMULATION PARAMETER OF GRID CONNECTEDMMC SYSTEM
References
- R. Marquardt, "Stromrichterschaltungen mit verteilten energiespeichern," German Patent DE 10103031A1, Jan. 24, 2001.
- A. Lesnicar and R. Marquardt, "An innovative modular multilevel converter topology suitable for a wide power range," in Proc. IEEE Power Tech Conf., Bologna, Italy, pp. 6, 2003.
- A. Lesnicar and R. Marquardt, "A new modular voltage source inverter topology," presented at the EPE, Toulouse, France, Sep. 2003.
- J. Dorn, H. Huang, and D. Retzmann, "A new multilevel voltage sourced converter topology for HVDC applications," in CIGRE Session, Paris, France, 2008.
- G. S. Konstantinou and V. G. Agelidis, "Performance evaluation of half-bridge cascaded multilevel converters operated with multicarrier sinusoidal PWM techniques," in Proc. IEEE Industrial Electronics and Applications Conf., pp. 3399-3404, 2009.
- D. Zhong, L. M. Tolbert, J. N. Chiasson, and B. Ozpineci, "Reduced switching-frequency active harmonic elimination for multilevel converters," IEEE Trans. Ind. Electron., Vol. 55, No. 4, pp. 1761-1770, Apr. 2008. https://doi.org/10.1109/TIE.2008.917068
- D. Zhong, L. M. Tolbert, and J. N. Chiasson, "Active harmonic elimination for multilevel converters," IEEE Trans. Power Electron., Vol. 21, No. 2, pp. 459-469, Mar. 2006. https://doi.org/10.1109/TPEL.2005.869757
- B. Ozpineci, L. M. Tolbert, and J. N. Chiasson, "Harmonic optimization of multilevel converters using genetic algorithms," IEEE Power Electron. Lett., Vol. 3, No. 3, pp. 92-95, Sep. 2005. https://doi.org/10.1109/LPEL.2005.856713
- S. Sirisukprasert, L. J. Sheng, and L. T. Hua, "Optimum harmonic reduction with a wide range of modulation indexes for multilevel converters," IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 875-881, Aug. 2002. https://doi.org/10.1109/TIE.2002.801226
- M. Glinka and R. Marquardt, "A new AC/AC multilevel converter family," IEEE Trans. Ind. Electron., Vol. 52, No. 3, pp. 662-669, Jun. 2005. https://doi.org/10.1109/TIE.2005.843973
- L. Pu, W. Yue, and C. Wulong, "Grouping-sorting optimized model predictive control of modular multilevel converter with reduced computational load," in 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Jul. 2015.
- B. Xia, Y. Li, and Z. Li, "A distributed voltage balancing method for modular multilevel converter," in IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia), Jul. 2017.
- Q. Tu and Z. Xu, "Impact of sampling frequency on harmonic distortion for modular multilevel converter," IEEE Trans. on Power Delivery, Vol. 26, No. 1, pp. 298-306, Dec. 2010. https://doi.org/10.1109/TPWRD.2010.2078837
- H. R. Campos and F. M. David, "Selective harmonic elimination for the modular multilevel converter," North American Power Symposium (NAPS), Sep. 2016.