• Title/Summary/Keyword: HUVECs

Search Result 184, Processing Time 0.03 seconds

Effects of Glutamine Deprivation and Serum Starvation on the Growth of Human Umbilical Vein Endothelial Cells (재대정맥 내피세포의 증식에 미치는 글루타민 및 혈청 결핍의 영향)

  • Jeong, Jin-Woo;Lee, Hye Hyeon;Park, Cheol;Kim, Wun-Jae;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.926-932
    • /
    • 2013
  • Glutamine and serum are essential for cell survival and proliferation in vitro, yet the signaling pathways that sense glutamine and serum levels in endothelial cells remain uninvestigated. In this study, we examined the effects of glutamine deprivation and serum starvation on the fate of endothelial cells using a human umbilical vein endothelial cell (HUVEC) model. Our data indicated that glutamine deprivation and serum starvation trigger a progressive reduction in cell viability through apoptosis induction in HUVECs as determined by DAPI staining and flow cytometry analysis. Although the apoptotic effects were more predominant in the glutamine deprivation condition, both apoptotic actions were associated with an increase in the Bax/Bcl-2 (or Bcl-xL) ratio, down-regulation of the inhibitor of apoptosis protein (IAP) family proteins, activation of caspase activities, and concomitant degradation of poly (ADP-ribose) polymerases. Moreover, down-regulation of the expression of Bid or up-regulation of truncated Bid (tBid) were observed in cells grown under the same conditions, indicating that glutamine deprivation and serum starvation induce the apoptosis of HUVECs through a signaling cascade involving death-receptor-mediated extrinsic pathways, as well as mitochondria-mediated intrinsic caspase pathways. However, apoptosis was not induced in cells grown in glutamine- and serum-free media when compared with cells exposed to glutamine deprivation or serum starvation alone. Taken together, our data indicate that glutamine deprivation and serum starvation suppress cell viability without apoptosis induction in HUVECs.

Angiogenesis-inhibiting Effects of Prunus mume Butanol Fractions on Human Umbilical Vein Endothelial Cells (매실 부탄올 분획물에 의한 혈관 신생 억제 효과)

  • Min, Hye-Ji;Kim, Jeong-Ho;Heo, Ji-An;Won, Yeong-Seon;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.59-65
    • /
    • 2021
  • Prunus mume Sieb. et Zucc is distributed throughout Asia and has traditionally been used as medicine and food. P. mume is known to contain large amounts of various organic acids, minerals, and phenol components. To date, the trend of P. mume research has focused only on the effects of antioxidant, anticancer and antibacterial, with only a few studies have focused on angiogenesis. Angiogenesis is a common characteristic of metastatic cancer through which oxygen and nutrients are delivered to the cells and tissues. In the present study, angiogenesis-inhibiting activity was investigated by evaluating the total polyphenol and flavonoid contents of the P. mume butanol fraction (PBF) and their ability to inhibit VEGF-induced human umbilical vein endothelial cells (HUVECs) proliferation, migration, invasion, and capillary formation. The polyphenols (12.81 mg GAE/g) and flavonoids (28.4 mg QE/g) of the PBF exhibited high antioxidant activity. The results of this study showed that PBF did not inhibit the proliferation of HUVECs at concentrations of 25-200 ㎍/ml and did not exhibit toxicity to normal cells. However, PBF inhibited the VEGF-induced mobility, invasion, and capillary formation of HUVECs. These results show that PBF inhibits the angiogenesis of HUVECs induced by VEGF. Therefore, PBF could serve as a therapeutic agent for the inhibition of angiogenesis.

Extract of Rubus coreanus Fruits Increases Expression and Activity of Endothelial Nitric Oxide Synthase in the Human Umbilical Vein Endothelial Cells (복분자 추출물에 의한 내피세포 NO 합성효소의 활성과 발현 증가)

  • Yoon, Hyun-Joong;Park, Soo-Young;Oh, Sung-Tack;Lee, Kee-Young;Yang, Sung-Yeul
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.44-55
    • /
    • 2011
  • This study aimed to investigate the effects of water extract of Rubus coreanus (RCE) on the expression and activity of endothelial nitric oxide synthase (eNOS), as well as its signal transduction pathways in human umbilical vein endothelial cells (HUVECs). The specific inhibitors of NOS show RCE treatment increases NO production in HUVECs due to the up-regulation of eNOS rather than iNOS. The real-time expression level of eNOS mRNA was also increased upon RCE treatment in HUVECs. While a PKC-specific inhibitor, RO-317549, did not alter RCE-induced NO production in HUVECs, tamoxifen (estrogen receptor-specific inhibitor), PD98059 (ERK-specific inhibitor) and LY-294002 (PI3K/Akt-specific inhibitor) did have suppressive effects. Increased NO production by RCE seems to result from a higher level of active eNOS (pSer1177). Specifically, inhibition of ERK not only decreased the level of active eNOS, but also increased the inactive form of the enzyme (pThr495) in HUVECs. This study suggests that RCE treatment increases NO production in HUVECs due to the increased expression and activity of eNOS. It is also shown that RCE-induced eNOS activation occurs partly through the binding of RCE to the estrogen receptor, along with ERK and PI3K/Akt-dependent signal transduction pathways. In addition, the regulatory binding proteins of eNOS including Hsp90 and caveolin-1 were related to these effects of RCE on eNOS activity in HUVECs.

Antioxidant and Anti-inflammatory Activities of Allium victorialis subsp. platyphyllum Extracts

  • Lee, Je-Hyuk;Choi, Soo-Im;Lee, Yong-Soo;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.796-801
    • /
    • 2007
  • This study was conducted to investigate antioxidant activity and anti-immunological inflammatory effect of Allium victorialis subsp. platyphyllum extracts (AVPEs). Antioxidant activities of AVPEs were determined by free radical scavenging assay and reducing power test. Leaf-part extract had comparatively better antioxidant activity than other-part extracts. Antioxidant activity of extracts had protective effect for human umbilical vein endothelial cells (HUVECs) against superoxide anions secreted from activated neutrophils. Also, we observed AVPEs had inhibitory effects on the adherence of monocytic THP-1 to HUVEC monolayer to the basal level. Inhibitory effect on cell adhesion was caused by suppression of tumor necrosis factor-${\alpha}\;(TNF-{\alpha})-upregulated$ expression of vascular cellular adhesion molecule-1 (VCAM-1) and E-selectin in HUVECs. From these results, we expect to support the evidence of anti-immunological inflammatory effects of Allium victorialis subsp. platyphyllum (AVP) as a Korean traditional pharmaceutical.

Interleukin-2 Promotes Angiogenesis by Activation of Akt and Increase of ROS

  • Bae, Jin-Hee;Park, Deok-Bum;Lee, Yun-Sil;Jeoung, Doo-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.377-382
    • /
    • 2008
  • Interleukin-2 plays a significant role in T cell proliferation. Here, we report the role of IL-2 in angiogenesis. IL-2 increased the ROS level and phosphorylation of Akt in human umbilical vein endothelial cells (HUVECs). IL-2 increased angiogenesis in an animal model and tube formation in HUVECs. The effect of IL-2 on angiogenesis and tube formation was mediated by ROS and Akt. This is the first report that IL-2 promotes angiogenesis.

Effects of Astragalus Membranaceus on Angiogenesis (황기가 혈관 형성에 미치는 영향)

  • Seo, Dong-Min;Choi, Do-Young;Lee, Jae-Dong
    • Journal of Acupuncture Research
    • /
    • v.24 no.2
    • /
    • pp.113-123
    • /
    • 2007
  • 목적 : 황기가 혈관 신생 작용이 있는지에 관하여 관찰한다. 황기는 상처의 치유나 허혈성 질환에 효과를 나타내는 것으로 알려져있다. 이러한 효과가 황기의 혈관 신생작용과의 관련성을 이해하며 향후 임상에 쓰일 수 있는 황기 약침액 개발을 위한 기초 자료를 목표로 한다. 방법 : 황기의 혈관 신생 작용의 관찰을 위하여 human umbilical vein endothelial cells(HUVECs)와 Matrigel angiogenesis model을 이용하여 연구하였다. 결과 : 황기는 용량에 따라서 HUVECs의 증식을 나타내었다. 또한 혈관 내피 세포의 이동과 관형 형성을 보였다. 혈관 신생 물질인 basic fibroblast growth factor(bFGF)가 황기에 의해 증가하였다. Matrigel angiogenesis model에서 황기는 조직학적으로 혈관 형성을 촉진하였으며,헤모글로빈의 증가를 나타내었다.

  • PDF

Antiplatelet and antithrombotic activities of purpurogallin in vitro and in vivo

  • Ku, Sae-Kwang;Bae, Jong-Sup
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.376-381
    • /
    • 2014
  • Enzymatic oxidation of pyrogallol was efficiently transformed to an oxidative product, purpurogallin (PPG). Here, the anticoagulant activities of PPG were examined by monitoring activated partial thromboplastin time (aPTT), prothrombin time (PT), and the activities of thrombin and activated factor X (FXa). And, the effects of PPG on expression of plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) were evaluated in tumor necrosis factor (TNF)-${\alpha}$ activated human umbilical vein endothelial cells (HUVECs). Treatment with PPG resulted in prolonged aPTT and PT and inhibition of the activities of thrombin and FXa, as well as inhibited production of thrombin and FXa in HUVECs. In addition, PPG inhibited thrombin-catalyzed fibrin polymerization and platelet aggregation. PPG also elicited anticoagulant effects in mice. In addition, treatment with PPG resulted in significant reduction of the PAI-1 to t-PA ratio. Collectively, PPG possesses antithrombotic activities and offers a basis for development of a novel anticoagulant.

Zerumbone, Sesquiterpene Photochemical from Ginger, Inhibits Angiogenesis

  • Park, Ju-Hyung;Park, Geun Mook;Kim, Jin-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.335-340
    • /
    • 2015
  • Here, we investigated the role of zerumbone, a natural cyclic sesquiterpene of Zingiber zerumbet Smith, on angiogenesis using human umbilical vein endothelial cells (HUVECs). Zerumbone inhibited HUVECs proliferation, migration and tubule formation, as well as angiogenic activity by rat aorta explants. In particular, zerumbone inhibited phosphorylation of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1, which are key regulators of endothelial cell function and angiogenesis. In vivo matrigel plug assay in mice demonstrated significant decrease in vascularization and hemoglobin content in the plugs from zerumbone-treated mice, compared with control mice. Overall, these results suggest that zerumbone inhibits various attributes of angiogenesis, which might contribute to its reported antitumor effects.

Sphingosine 1-phosphate induces vesicular endothelial growth factor expression in endothelial cells

  • Heo, Kyun;Park, Kyung-A;Kim, Yun-Hee;Kim, Sun-Hee;Oh, Yong-Seok;Kim, In-Hoo;Ryu, Sung-Ho;Suh, Pann-Ghill
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.685-690
    • /
    • 2009
  • Angiogenesis is essential for tumor growth and vascular endothelial cell growth factor (VEGF) plays a key role in this process. Conversely, sphingosine 1-phosphate (S1P) is a biologically active sphingolipid known to play a key role in cancer progression by regulating endothelial cell proliferation and migration. In this study, the authors found that S1P increases the level of VEGF mRNA in human umbilical vein endothelial cells (HUVECs) and immortalized HUVECs (iHUVECs). Additionally, S1P was found to increase VEGF promoter activity in MS-1 mouse pancreatic islet endothelial cells. Furthermore, a pharmacological inhibitory study revealed that $G_{\alpha i/o}$-mediated phospholipase C, Akt, Erk, and p38 MAPK signaling are involved in this S1P-induced expression of VEGF. A component of AP1 transcription factor is important for S1P-induced VEGF expression. Taken together, these findings suggest that S1P enhances endothelial cell proliferation and migrat ion by upregulating the expression of VEGF mRNA.

Antiangiogenic Effect of 3--O-D-galactopyranosylglyceride Isolated from Chrysanthemum Coronarium L. (개채에서 분리한 3-O--D-galactopyranosylglyceride의 혈관형성 저해효과)

  • Lee Hyun Cheol;Song Ho Chul;Lim Jin Ki;Khil Jae Ho;Kim Sung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1602-1607
    • /
    • 2004
  • 3-O-D-galactopyranosylglyceride (GPG; fatty acids R1, R2 = myristic acid 11.62%, palmitic acid 61.90% and oleic acid 26.48%) was isolated from Chrysanthemum coronarium L that has been used for treating renal and cardiovascular diseases as one of vegetables or medicinal drug. However, little was known about the anti-angiogenic activity of GPG. Thus, anti-angiogenic effect of GPG was evaluated in human umbilical vein endothelial cells (HUVECs) in vitro and in vivo. GPG effectively inhibited bFGF-induced migration and invasion of HUVECs in a concentration-dependent manner, whereas it did not inhibit bFGF-induced proliferation and capillary-like tube formation of HUVECs. To examine the mechanism of anti-angiogenic activity of GPG, gelatin zymography was carried out. GPG downregulated the expression of matrix metalloproteinase-2 in a concentration-dependent manner. Furthermore, GPG significantly disrupted bFGF-induced neovascularization on the chick chorioallantoic membrane assay in vivo. These results suggest that 3-O--D-galactopyranosylglyceride may inhibit neovascularization by inhibiting angiogenic activity of endothelial cells via regulation of matrix metalloproteinase-2 (MMP-2).