Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.1.44

Extract of Rubus coreanus Fruits Increases Expression and Activity of Endothelial Nitric Oxide Synthase in the Human Umbilical Vein Endothelial Cells  

Yoon, Hyun-Joong (Department of Biochemistry, Medical School and Research Institute of Medical Science, Chonnam National University)
Park, Soo-Young (Department of Obstetrics and Gynecology, Medical School and Research Institute of Medical Science, Chonnam National University)
Oh, Sung-Tack (Department of Obstetrics and Gynecology, Medical School and Research Institute of Medical Science, Chonnam National University)
Lee, Kee-Young (Department of Biochemistry, Medical School and Research Institute of Medical Science, Chonnam National University)
Yang, Sung-Yeul (Department of Biochemistry, Medical School and Research Institute of Medical Science, Chonnam National University)
Publication Information
Journal of Life Science / v.21, no.1, 2011 , pp. 44-55 More about this Journal
Abstract
This study aimed to investigate the effects of water extract of Rubus coreanus (RCE) on the expression and activity of endothelial nitric oxide synthase (eNOS), as well as its signal transduction pathways in human umbilical vein endothelial cells (HUVECs). The specific inhibitors of NOS show RCE treatment increases NO production in HUVECs due to the up-regulation of eNOS rather than iNOS. The real-time expression level of eNOS mRNA was also increased upon RCE treatment in HUVECs. While a PKC-specific inhibitor, RO-317549, did not alter RCE-induced NO production in HUVECs, tamoxifen (estrogen receptor-specific inhibitor), PD98059 (ERK-specific inhibitor) and LY-294002 (PI3K/Akt-specific inhibitor) did have suppressive effects. Increased NO production by RCE seems to result from a higher level of active eNOS (pSer1177). Specifically, inhibition of ERK not only decreased the level of active eNOS, but also increased the inactive form of the enzyme (pThr495) in HUVECs. This study suggests that RCE treatment increases NO production in HUVECs due to the increased expression and activity of eNOS. It is also shown that RCE-induced eNOS activation occurs partly through the binding of RCE to the estrogen receptor, along with ERK and PI3K/Akt-dependent signal transduction pathways. In addition, the regulatory binding proteins of eNOS including Hsp90 and caveolin-1 were related to these effects of RCE on eNOS activity in HUVECs.
Keywords
Human umbilical vein endothelial cell; NO; eNOS; Rubus coreanus; estrogen receptor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wagner, J. D., M. S., Anthony, and J. M. Cline. 2001. Soy phytoestrogens: research on benefits and risks. Clin. Obstet. Gynecol. 44, 843-852.   DOI
2 Wallerath, T., G. Deckert, T. Ternes, H. Anderson, H. Li, K. Witte, and U. Forstermann. 2002. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 106, 1652-1658.   DOI
3 Yoon, I., J. H. Wee, J. H. Moon, T. H. Ahn, and K. H. Park. 2003. Isolation and identification of quercetin with antioxidative activity from the fruits of Rubus coreanum Miquel. Korean J. Food Sci. Technol. 35, 499-502.   과학기술학회마을
4 You, H. J., J. Y. Kim, and G. H. Jeong. 2003. $17{\beta}-Estradiol$ increases inducible nitric oxide synthase expression in macrophages. Biochem. Biophys. Res. Commun. 303, 1129-1134.   DOI
5 Smith, A. R., F. Visioli, and T. M. Hagen. 2006. Plasma membrane- associated endothelial nitric oxide synthase and activity in aging rat aortic vascular endothelia markedly decline with age. Arch. Biochem. Biophy. 454, 100-105.   DOI
6 Wade, C., F. Kronenberg, A. Kelly, and P. A. Murphy. 1999. Hormone modulating herbs: implications for women’s health. J. Am. Med. Womens Assoc. 54, 181-183.
7 Oka, N., M. Yamamoto, C. Schwencke, J. Kawabe, T. Ebina, S. Ohno, J. Couet, M. P. Lisanti, and Y. Ishikawa. 1997. Caveolin interaction with protein kinase C. Isoenzyme-dependent regulation of kinase activity by the caveolin scaffolding domain peptide. J. Biol. Chem. 272, 33416-33421.   DOI
8 Ososki, A. L. and E. J. Kennelly. 2003. Phytoestrogens: a review of the present state of research. Phytother. Res. 17, 845-869.   DOI
9 Patel, A. V., J. Rojas-Vera, and C. G. Dacke1. 2004. Therapeutic Constituents and Actions of Rubus Species. Current Medicinal Chemistry 11, 1501-1512.   DOI   ScienceOn
10 Prabhakar, P., V. Cheng, and T. Michel. 2000. A chimeric transmembrane domain directs endothelial nitric-oxide synthase palmitoylation and targeting to plasmalemmal caveolae. J. Biol. Chem. 275, 19416-19421.   DOI
11 Ruggiero, R. J. and F. E. Likis. 2002. Estrogen: physiology, pharmacology, and formulations for replacement therapy. J. Midwifery Womens Health 47, 130-138.   DOI
12 Russell, K. S., M. P. Haynes, T. Caulin-Glaser, J. Rosneck, W. C. Sessa, and J. R. Bender. 2000. Estrogen stimulates heat shock protein 90 binding to endothelial nitric oxide synthase in human vascular endothelial cells. J. Biol. Chem. 275, 5026-5030.   DOI
13 Schmidt, H. H. and F. Murad. 1991. Purification and characterization of a human NO synthase. Biochem. Biophys. Res. Commun. 181, 1372-1377.   DOI
14 Klinge, C. M., K. A. Blankenship, K. E. Risinger, S. Bhatnagar, E. L. Noisin, W. K. Sumanasekera, L. Zhao, D. M. Brey, and R. S. Keynton. 2005. Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells. J. Biol. Chem. 280, 7460-7468.   DOI
15 Nakaya, M., H. Tachibana, and K. Yamada. 2005. Isoflavone genistein and daidzein up-regulate LPS-induced inducible nitric oxide synthase activity through estrogen receptor pathway in RAW264.7 cells. Biochem. Pharm. 71, 108-114.   DOI
16 Oh, M. S., W. M. Yang, M. S. Chang, W. Park, D. R. Kim, H. K. Lee, W. N. Kim, and S. K. Park. 2007. Effects of Rubus coreanus on sperm parameters and cAMP-responsive element modulator (CREM) expression in rat testes. J. Ethnopharm. 114, 463-467.   DOI
17 Kim, E. J., Y. J. Lee, H. K. Shin, and J. H. Park. 2005. Induction of apoptosis by the aqueous extract of Rubus coreanum in HT-29 human colon cancer cells. Nutrition 21, 1141-1148.   DOI
18 Kronenberg, F. and A. Fugh-Berman. 2002. Complementary and alternative medicine for menopausal symptoms: a review of randomized, controlled trials. Ann. Intern. Med. 137, 805-813.   DOI   ScienceOn
19 Ku, C. H. and S. P. Mun. 2008. Antioxidant activities of ethanol extracts from seeds in fresh Bokbunja (Rubus coreanus Miq.) and wine processing waste. Bioresour. Technol. 99, 4503-4509.   DOI
20 Kuiper, G. G., J. G. Lemmen, B. Carlsson, J. C. Corton, S. H. Safe, T. van der Saag, B. van der Burg, and J. A. Gustafsson. 1998. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139, 4252-4263.   DOI
21 Liu, J., P. Oh, T. Horner, R. A. Rogers, and J. E. Schnitzer. 1997. Organized endothelial cell surface signal transduction in caveolae distinct from glycosylphosphatidylinositol-anchored protein microdomains. J. Biol. Chem. 272, 7211-7222.   DOI
22 Brouet, A., P. Sonveaux, C. Dessy, J. L. Balligand, and O. Feron. 2001. Hsp90 ensures the transition from the early $Ca^{2+}-dependent$ to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J. Biol. Chem. 276, 32663-32669.   DOI
23 Garcia-Cardena, G., R. Fan, V. Shah, R. Sorrentino, G. Cirino, A. Papapetropoulos, and W. C. Sessa. 1998. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392, 821-824.   DOI
24 Gruber, C. J., W. Tschugguel, C. Schneeberger, and J. C. Huber. 2002. Production and actions of estrogens. N. Engl. J. Med. 346, 340-352.   DOI
25 Haynes, M. P., D. Sinha, K. S. Russell, M. Collinge, D. Fulton, M. Morales-Ruiz, W. C. Sessa, and J. R. Bender. 2000. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ. Res. 87, 677-682.   DOI   ScienceOn
26 Brzezinski, A. and A. Debi. 1999. Phytoestrogens: the ‘natural’ selective estrogen receptor modulators? Eur. J. Obstet. Gynecol. Reprod. Biol. 85, 47-51.   DOI
27 Cao, S., J. Yao, and V. Shah. 2003. The proline-rich domain of dynamin-2 is responsible for dynamin-dependent in vitro potentiation of endothelial nitric-oxide synthase activity via selective effects on reductase domain function. J. Biol. Chem. 278, 5894-5901.   DOI
28 Caulin-Glaser, T., G. Garcia-Cardena, P. Sarrel, W. C. Sessa, and J. R. Bender. 1997. $17{\beta}-Estradiol $regulation of human endothelial cell basal nitric oxide release, independent of cytosolic $Ca^{2+}$ mobilization. Circ. Res. 81, 885-892.   DOI   ScienceOn
29 Chambliss, K. L. and P. W. Shaul. 2002. Estrogen modulation of endothelial nitric oxide synthase. Endocrine Rev. 23, 665-686.   DOI
30 Mahn, K., C. Borras, G. A. Knock, P. Taylor, I. Y. Khan, D. Sugden, L. Poston, J. P. Ward, R. M. Sharpe, J. Vina, P. I. Aaronson, and G. E. Mann. 2005. Dietary soy isoflavone induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo. FASEB J. 19, 1755-1757.
31 Marin, J. 1995. Age-related changes in vascular responses. Mech. Ageing Dev. 79, 71-114.   DOI
32 Hisamoto, K., M. Ohmichi, H. Kurachi, J. Hayakawa, Y. Kanda, Y. Nishio, K. Adachi, K. Tasaka, E. Miyoshi, N. Fujiwara, N. Taniguchi, and Y. Murata. 2001. Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells. J. Biol. Chem. 276, 3459-3467.   DOI
33 Hishikawa, K., T. Nakaki, T. Marumo, H. Suzuki, R. Kato, and T. Saruta. 1995. Up-regulation of nitric oxide synthase by estradiol in human aortic endothelial cell. FEBS Lett. 360, 291-293.   DOI
34 Hoffmann, J., J. Haendeler, A. Aicher, L. Rossog, M. Vasa, A. M. Zeiher, and A. Dimmeler. 2001. Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: Important role of nitric oxide. Circ. Rec. 89, 709-715.   DOI
35 Ignarro, L. J., G. Cirino, A. Casini, and C. Napoli. 1999. Nitric oxide as signaling molecule in the vascular system: an overview. J. Cardiovasc. Pharmacol. 34, 879-886.   DOI
36 Jagnandan, D., W. C. Sessa, and D. Fulton. 2005. Intracellular location regulates calcium-calmodulin-dependent activation of organelle-restricted eNOS. Am. J. Physiol. Cell Physiol. 289, 1024-1033.   DOI
37 John, T. A., B. O. Ibe, and J. U. Raj. 2006. Oxygen alters caveolin-1 and nitric oxide synthase-3 functions in ovine fetal and neonatal lung microvascular endothelial cells. Am J. Physiol. Lung Cell Mol. Physiol. 291, 1079-1093.   DOI
38 Dimmeler, S., I. Fleming, B. Fisslthaler, C. Hermann, R. Busse, and A. M. Zeiher. 1999. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601-605.   DOI
39 Choi, J., K. T. Lee, J. Ha, S. Y. Yun, C. D. Ko, H. J. Jung, and H. J. Park. 2003. Antinociceptive and antiinflammatory effects of Niga-ichigoside F1 and 23-hydroxytormentic acid obtained from Rubus coreanus. Biol. Pharm. Bull. 26, 1436-1441.   DOI
40 Chowienczyk, P. 2002. Vascular aging. Clin. Sci. 102, 601-602.   DOI
41 Dimmeler, S., J. Haendeler, and A. M. Zeiher, 2002. Regulation of endothelial cell apoptosis in atherothrombosis. Curr. Opin. Lipidol. 13, 531-536.   DOI
42 Simoncini, T., A. Hafezi-Moghadam, D. P. Brazil, K. Ley, W. W. Chin, and J. K. Liao. 2000. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol- 3-OH kinase. Nature 407, 538-541.   DOI
43 Adlercreutz, H. 2002. Phyto-oestrogens and cancer. Lancet Oncol. 3, 364-373.   DOI
44 Bredt, D. S. and S. H. Snyder. 1990. Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. U.S.A. 87, 682-685.   DOI
45 Briones, A. M., M. Salaices, and E. Vila. 2005. Ageing alters the production of nitric oxide and prostanoids after $IL-1{\beta}$ exposure in mesenteric resistance arteries. Mech. Ageing Dev. 126, 710-721.   DOI
46 Setchell, K. D. R. 1998. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am. J. Clin. Nutr. 68, 1333S-1146S.
47 Shin, T. Y., S. H. Kim, E. S. Lee, D. O. Eom, and H. M. Kim. 2002. Action of Rubus coreanus extract on systemic and local anaphylaxis. Phytother. Res. 16, 508-513.   DOI
48 Singleton, V. L., R. Orthofer, and R. M. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152-178.   DOI
49 Siow, R. C., F. Y. Li, D. J. Rowlands, P. Winter, and G. E. Mann. 2007. Cardiovascular targets for estrogens and phytoestrogens: transcriptional regulation of nitric oxide synthase and antioxidant defense genes. Free Radic. Biol. Med. 42, 909-925.   DOI
50 Sirtori, C. R., A. Arnoldi, and S. K. Johnson. 2005. Phytoestrogens: end of a tale? Ann. Med. 37, 423-438.   DOI
51 Smart, E. J., D. C. Foster, Y. S. Ying, B. A. Kamen, and R. G. W. Anderson. 1994. Protein kinase C activators inhibit receptor-mediated potocytosis by preventing internalization of caveolae. J. Cell Biol. 124, 307-313.   DOI
52 Michel, J. B., O. Feron, D. Sacks, and T. Michel. 1997. Reciprocal regulation of endothelial nitric-oxide synthase by $Ca^{2+}-calmodulin$ and caveolin. J. Biol. Chem. 272, 15583-15586.   DOI
53 Schmidt, H. H., R. Seifert, and E. Bohme. 1989. Formation and release of nitric oxide from human neutrophils and HL-60 cells induced by a chemotactic peptide, platelet activating factor and leukotriene $B_4$. FEBS Lett. 244, 357-360.   DOI
54 Sessa, W. C. 2005. Regulation of endothelial derived nitric oxide in health and disease. Mem. Inst. Oswaldo Cruz. 100, 15-18.
55 Mense, S. M., T. K. Hei, R. K. Ganju, and H. K. Bhat. 2008. Phytoestrogens and breast cancer prevention: possible mechanisms of action. Environ. Health Perspect. 116, 426-433.   DOI
56 Michell, B. J., M. B. Harris, Z. P. Chen, H. Ju, V. J. Venema, M. A. Blackstone, W. Huang, R. C. Venema, and B. E. Kemp. 2002. Identification of regulatory sites of phosphorylation of the bovine endothelial nitric-oxide synthase at serine 617 and serine 635. J. Biol. Chem. 277, 42344-42351.   DOI
57 Minshall, R. D., W. C. Sessa, R. V. Stan, R. G. Anderson, and A. B. Malik. 2003. Caveolin regulation of endothelial function. Am. J. Physiol. Lung Cell Mol. Physiol. 285, L1179-L1183.
58 Moncada, S., R. M. Palmer, and E. A. Higgs. 1990. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109-142.
59 Moon, Y. J., X. Wang, and M. E. Morris. 2006. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol. In Vitro 20, 187-210.   DOI
60 Moutsatsou, P. 2007. The spectrum of phytoestrogens in nature: our knowledge is expanding. Hormones 6, 173-193.
61 Duffy, S. J., J. F. Jr. Keaney, M. Holbrook, N. Gokce, P. L. Swerdloff, B. Frei, and J. A. Vita. 2001. Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation 104, 151-156.   DOI   ScienceOn
62 Ju, H., R. Zou, V. J. Venema, and R. C. Venema. 1997. Direct interaction of endothelial nitric oxide synthase and caveolin- 1 inhibits synthase activity. J. Biol. Chem. 272, 18522-18525.   DOI
63 Katzenellenbogen, B. S. 1996. Estrogen receptors: bioactivities and interactions with cell signaling pathways. Biol. Reprod. 54, 287-293.   DOI   ScienceOn
64 Kelly, M. J. and E. R. Levin. 2001. Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol. Metab. 12, 152-156.   DOI
65 Figtree, G. A., D. McDonald, H. Watkins, and K. M. Channon. 2003. Truncated estrogen receptor alpha 46-kDa isoform in human endothelial cells: relationship to acute activation of nitric oxide synthase. Circulation 107, 120-126.   DOI
66 Fleming, I., B. Fissltahler, S. Dimmeler, B. E. Kemp, and R. Busse. 2001. Phosphorylation of Thr(495) regulates $Ca(^{2+})/calmodulin-dependent$ endothelial nitric oxide synthase activity. Circ. Res. 88, E68-75.   DOI
67 Fulton, D., R. Babbitt, S. Zoellner, J. Fontana, L. Acevedo, T. J. McCabe, Y. Iwakiri, and W. C. Sessa. 2004. Targeting of endothelial nitric-oxide synthase to the cytoplasmic face of the Golgi complex or plasma membrane regulates Aktversus calcium-dependent mechanisms for nitric oxide release. J. Biol. Chem. 279, 30349-30357.   DOI
68 Fulton, D., J. P. Gratton, T. J. McCabe, J. Fontana, Y. Fujio, K. Walsh, T. F. Franke, A. Papapetropoulos, and W. C. Sessa. 1999. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597-601.   DOI