• Title/Summary/Keyword: HUVEC

Search Result 151, Processing Time 0.023 seconds

Isolation of Endothelial Cells and Smooth Muscle Cells from Rat Aort (흰쥐 대동맥의 내피세포와 민무늬근육세포 분리)

  • Yun, Young-Eun;Song, In-Hwan;Sung, Eon-Ki;Kim, Joo-Young
    • Journal of Yeungnam Medical Science
    • /
    • v.23 no.2
    • /
    • pp.182-192
    • /
    • 2006
  • Background: Atherosclerosis has emerged as the leading cause of death in developed countries. At present, human umbilical vein endothelial cells (HUVEC) are most commonly used for the investigation of Endothelial cells (EC). However, HUVEC are not found in arteries but only in veins. Currently there are many reports on methods used to isolate EC;, most of these methods require special equipment to remove contaminating smooth muscle cells (SMC). Materials and Methods: The method described here may be used to isolate not only ECs but also SMCs;,the approach presented here did not require special equipment. Rat aorta was treated with 2 mg/ml of type II collagenase solution for 45 minutes. The isolated cells from the aorta were incubated in medium G for a week;, only ECs could be separated. After the collagenase treatment, the rest of aorta was cut lengthwise, and left undisturbed to obtain SMCs in the culture dish for 10 days. To verify the purity of the isolated cells, we performed immunofluorescence and evaluated the results with transmission electron microscopy analysis. Results: The immunofluorescence study demonstrated specific expression of CD31 and ${\alpha}$-smooth muscle actin in the isolated ECs and SMCs, respectively. Cultured ECs and SMCs showed their own fine structure characteristics. Conclusion: These results suggest that this method for isolating ECs and SMCs may be especially useful for the study of atherosclerosis.

  • PDF

Effect of 1,2,3,4,6-penta-O-galloyl-$\beta$-D-glucose isolated from Galla Rhois on gap junctional intercellular communication and antiangiogenic activity (오배자 BuOH층에서 분리한 1,2,3,4,6-penta-O-galloyl-$\beta$-D-glucose의 세포간교통 회복 및 혁관형성 억제작용에 대한 효과)

  • Huh Jeong Eun;Lee Hyo Jung;Song Gyu Yong;Cha Bae Cheon;Kim Han Sung;Yoo Dong Youl;Ryu Shi Yong;Kim Sung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.452-457
    • /
    • 2002
  • Galla Rhois is a gallnut of Rhus javanica Linne used for treatment of diarrhea, hemorrhage, cough, leukorrhea and toxic tumor etc in oriental medicine. For the evaluation of antitumor effect of Galla Rhois, activity based fractionation was done. We isolated an effective compound and identified 1,2,3,4,6-penta-O-galloyl-β-D-glucose(PGG) by photometric analysis such as NMR and MASS. Then, we studied the angiogenic activity of PGG. It showed a cytotoxicity against SK-OV-3, SK-OV-3, HT1080 with IC/sub 50/ of 50 ug/ml approximately. It also effectively inhibited proliferation of HUVEC cells treated by bFGF to 30% of control at 20 ug/ml and cell migration to 80% at 10 ug in a dose dependent fashion. Tube formation of HUVEC cells on matrigel was effectively suppressed from 2.5 ug/ml of concentration by PGG. Moreover, it effectively recovered the dysfunction of gap junctional intercellular communication in WB-F344 rat liver epithelial cells caused by hydrogen peroxide at 4 ug/ml suggesting it potently can inhibit tumor promotion. Taken together, it indicates 1,2,3,4,6-penta-O-galloyl- β -D-glucose has antiangiogenic activity.

Comparison of Antioxidant, Anticancer and Immunomodulating Activities of Extracts from DongChongXiaCao (동충하초의 균사 및 배양액의 항산화, 항암, 면역활성의 비교)

  • Heo, Jin-Chul;Nam, Sung-Hee;Kang, Seok-Woo;Hong, In-Pyo;Lee, Kwang-Kil;Park, Ja-Young;Kim, Kyung-Hae;Han, Song-Yi;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.14 no.6
    • /
    • pp.681-687
    • /
    • 2007
  • Biological properties of DongChongXiaCao extracts and culture supernatants were evaluated using DPPH and FRAP (antioxidants), Raw 264.7 (NO production), B16-F1 cells (cell migration activity) and HUVECs (angiogenesis activity). We found that antioxidant activity was higher in mycelium culture supernatants than in mycelial extracts. Mycelial extracts and culture supernatants inhibited or increased cyclooxygenase-2 transcription activity and NO production. Various extracts and culture supernatants inhibited B16 cell migration and motility, and inhibited HUVEC tube formation. These findings indicate that DongChongXiaCao extracts and products of mycelium could be a useful biological resource for anti-oxidant and anti-cancer purposes.

Delphinidin Chloride Effects on the Expression of TNF-$\alpha$ Induced Cell Adhesion Molecules (TNF-$\alpha$에 의해 유도된 세포부착분자의 발현에 대한 Delphinidin chloride의 억제 효과)

  • Koh, Eun-Gyeong;Chae, Soo-Chul;Seo, Eun-Sun;Na, Myung-Suk;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.88-94
    • /
    • 2009
  • The process of atherosclerosis begins through secretion of inflammatory cytokine or adhesion of leukocyte from damage in blood vessels and transmigration. This study was conducted to investigate the effects of delphinidin chloride (DC) in the initial process of atherosclerosis on the expression of ICAM-1 (Intracellular Adhesion Molecule-1) and VCAM-1 (Vascular Adhesion Molecule-1) related to adhesion of leukocyte at the HUVEC (human umbilical vein endothelial cell line. As a result, cell growth inhibition rate at 50 ${\mu}M$ was respectively 4, 3 and 5% without cell toxicity. As a result of morphological observation monocyte-endothelial cell adhesion assay and optical microscope carried out to measure attachment of mononuclear cells to endothelial cells induced by Tumor necrosis factor-alpha (TNF-$\alpha$) at concentrations without cell toxicity, DC concentration-dependently suppressed attachment. When effects on the expression of VCAM-1 and ICAM-1, cell adhesion molecules induced from endothelial cells by TNF-$\alpha$, were comparatively analyzed using western blot analysis and RT-PCR methods, protein of VCAM-1 and ICAM-1 and expression at the level of mRNA were concentration-dependently reduced. Taken together, the results of this studies provide evidence that DC possess an anti-metastatic activity.

The Effect of Lonicera Japonica Thunberg on Inflammatory Factor Expression Associated with Atherosclerosis (금은화가 HUVEC에서 죽상동맥경화증 관련 염증인자 발현 억제에 미치는 영향)

  • Yang, Ji-hae;Yoo, Ho-ryong;Kim, Yoon-sik;Seol, In-chan
    • The Journal of Internal Korean Medicine
    • /
    • v.42 no.1
    • /
    • pp.25-39
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the effect of Lonicera Japonica Thunberg (LJT) on the inflammatory factor expression associated with atherosclerosis in human umbilical vein endothelial cells (HUVECs). Methods: After treatment with LJT in HUVEC which is treated with TNF-α, we measured the expression levels of biomarkers (MCP-1, ICAM-1, VCAM-1, KLF2, and eNOS), mRNA (CCL2, ICAM1, VCAM1, KLF2, and NOS3), and the proteins (MCP-1, ICAM-1, VCAM-1, KLF2, eNOS, ERK, JNK, and p38). Results: 1. Compared to the control, LJT significantly reduced MCP-1 and VCAM-1 levels at concentrations of 100, 200, and 400 ㎍/ml and ICAM-1 expression at 200 and 400 ㎍/ml compared to the control. It increased KLF2 levels at all three concentrations, but not significantly, while eNOS expression was significantly increased at 400 ㎍/ml. 2. LJT was seen to significantly reduce the expression of CCL2, ICAM1, and VCAM1 mRNA at concentrations of 100, 200, and 400 ㎍/ml compared to the control. In contrast, significantly increased KLF2 and NOS3 mRNA levels were observed at 400 ㎍/ml and at 200 and 400 ㎍/ml, respectively. 3. Compared to the control, LJT significantly reduced the protein expression of MCP-1 and VCAM-1 at 200 and 400 ㎍/ml and of ICAM-1 at 400 ㎍/ml. In addition, it increased both KLF2 and eNOS protein levels at 200 and 400 ㎍/ml. Although LJT did not have an effect on ERK expression in comparison with the control, it significantly reduced JNK levels at 200 and 400 ㎍/ml and p38 levels at 400 ㎍/ml. Conclusions: These results suggest that LJT has an effect on the inhibition of inflammatory factor expression associated with atherosclerosis in HUVECs which could contribute to the prevention of cardiovascular and cerebrovascular diseases.

Anti-Inflammatory Effect of Ethanol Extract from the Seeds of Arctium Lappa L. in Vascular Endothelial Cells (혈관내피세포에서 우방자(牛蒡子) 에탄올 추출물의 항염증 효과)

  • Lee, Yun-Jung;Yoon, Jung-Joo;Kim, Hye-Yoom;Ahn, You-Mee;Hong, Mi-Hyeon;Son, Chan-Ok;Na, Se-Won;Lee, Ho-Sub;Kang, Dae-Gill
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.32 no.3
    • /
    • pp.20-31
    • /
    • 2019
  • Objectives: The seeds from Arctium lappa have been considered for its various pharmacological properties, which include anti-carcinogenic, anti-inflammatory, anti-diabetic, and anti-viral activities. Methods: In the present study, we investigated the anti-inflammatory effect of the ethanol extract from the seeds of Arctium lappa L (EAL) on cytokine-induced vascular inflammation in human umbilical vein endothelial cells (HUVEC). Results: Pretreatment with EAL significantly decreased tumor necrosis factor alpha ($TNF-{\alpha}$)-induced cell adhesion molecules expression such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial-selectin (E-selectin) in a dose-dependent manner. Cell adhesion assay showed that pretreatment with EAL suppressed HUVEC-monocyte adhesion by $TNF-{\alpha}$ over $1{\mu}g/ml$ concentration. We investigated the involvement of nuclear transcription factor kappa-B ($NF-{\kappa}B$) in $TNF-{\alpha}$-induced vascular inflammation. $NF-{\kappa}B$ p65 nuclear expression was induced by $TNF-{\alpha}$, however, pretreatment with EAL was attenuated that nuclear translocation. In cytoplasm, EAL was also attenuated $TNF-{\alpha}$-induced decrease of inhibitor of ${\kappa}B-{\alpha}$ ($I{\kappa}B-{\alpha}$) expression. Moreover, EAL significantly decreased $TNF-{\alpha}$-induced production of intracellular reactive oxygen species (ROS). Conclusions: Taken together, our findings suggest that seeds of Arctium lappa L could be a therapeutic herb for prevention of cardiovascular diseases throughout the inhibition of vascular endothelial inflammation.

Anti-oxidative and Anti-inflammatory Effect of Fractionated Extracts of Smilacis Glabrae Rhizoma in Human Umbilical Vein Endothelial Cell (혈관내피세포에서 토복령(土茯苓)의 항산화 및 항염증 효과)

  • Lee, Chang-Hyun;Yi, Hyo-Seung;Kim, Jae-Eun;Heo, Sook-Kyoung;Cha, Chang-Min;Won, Chan-Wook;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.24 no.3
    • /
    • pp.39-50
    • /
    • 2009
  • Objectives : Smilacis glabrae rhizoma (SG) has been traditionally used as a herbal medication of musculoskeletal disorders like arthritis, pain, convulsions, and syphilis in traditional Korean medicine. This study was investigated anti-oxidative and anti-inflammatory effect of fractionated extracts of Smilacis Glabrae Rhizoma in Human Umbilical Vein Endothelial Cell (HUVEC). Methods : SG extract prepared with methanol, and then fractionated with hexane, dichloromethane, ethylacetate, n-butanol and water. Inhibitory effect of SG onto free radical generation was determined by measuring DPPH, superoxide anions and nitric oxide scavenging activities in vitro. Cytotoxic activity of extracts on RAW 264.7 cells was measured using 5-(3-caroboxymethoxyphenyl)-2H-tetra-zolium inner salt (MTS) assay. Intracelluar oxidation was analysed by DCF-DA assay. The nitric oxide (NO) production was measured by Griess reagent system. The levels of ICAM-1 and VCAM-1 expression were confirmed by western blot. And proinflammatory cytokines were measured by ELISA kit. Results : Our results indicated that fractionated extracts, especially ethyl acetate (EA) extract, significantly inhibited free radical generation, the TNF-$\alpha$-induced intracellular oxidation. Furthermore, the EA extract protected TNF-$\alpha$-induced adhesion to THP-1, expression of adhesion molecules accompanied by an attenuation of IL-6 and IL-8 formation in HUVEC. Conclusions : These results indicate that EA extract of SG have potential as an agent of atherosclerosis and other chronic inflammatory diseases including diabetes, hypertension, and arthritis.

Inhibitory Effect of Chloroform Extract of Marine Algae Hizikia Fusifomis on Angiogenesis (Hizikia fusiformis 클로로포름 추출물의 in vitro 및 in vivo 혈관신생 억제 연구)

  • Myeong-Eun Jegal;Yu-Seon Han;Shi-Young Park;Ji-Hyeok Lee;Eui-Yeun Yi;Yung-Jin Kim
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.399-407
    • /
    • 2024
  • Angiogenesis is the process by which new blood vessels form from existing blood vessels. This phenomenon occurs during growth, healing, and menstrual cycle changes. Angiogenesis is a complex and multifaceted process that is important for the continued growth of primary tumors, metastasis promotion, the support of metastatic tumors, and cancer progression. Impaired angiogenesis can lead to cancer, autoimmune diseases, rheumatoid arthritis, cardiovascular disease, and delayed wound healing. Currently, there are only a handful of effective antiangiogenic drugs. Recent studies have shown that natural marine products exhibit antiangiogenic effects. In a previous study, we reported that the hexane extract of H. fusiformis (HFH) could inhibit the development of new blood vessels both in vitro and in vivo. The aim of this study was to describe the inhibitory effect of chloroform extracts of H. fusiformis on angiogenesis. To investigate how chloroform extract prevents blood vessel growth, we examined its effects on HUVEC, including cell migration, invasion, and tube formation. In a mouse Matrigel plug assay, H. fusiformis chloroform extract (HFC) also inhibited angiogenesis in vivo. Certain proteins associated with blood vessel growth were reduced after HFC treatment. These proteins include vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK)/extracellular signal transduction kinase, and serine/threonine kinase 1 (AKT). These studies have shown that the chloroform extract of H. fusiformis can inhibit blood vessel growth both in vitro and in vivo.

Curcumin's Effect on ICAM-1 VCAM-1 Expression in Human Umbilical Vein Endothelial Cells (혈관내피세포에서 curcumin이 ICAM-1 및 VCAM-1발현에 미치는 효과)

  • Kim, Kyeong-Su;Na, Cheol;Shin, Byung-Cheul;Kwon, Young-Dal;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.1
    • /
    • pp.1-13
    • /
    • 2008
  • 목 적 : 동맥경화 유발에 있어서 중요한 역할을 수행하는 부착분자는 혈관내피세포가 염증성 물질에 자극 받아서 생성된다. 본 연구는 항염증성 curcumin이 혈관내피세포 부착분자 발현에 미치는 효과를 조사하였다. 방 법 : 혈관내피세포는 HUVEC을 사용하였고, 염증성 물질 $TNF-\alpha$로 자극하였다. 결 과 : Curcumin은 부착분자 VCAM-1 및 ICAM-1 발현을 억제시켜, 혈관내피세포에 백혈구가 부착되는 것을 억제하였다. Curcumin은 ICAM-1 및 VCAM-1 promoter 활성을 억제하였고, 또한 억제 kB의 인산화를 차단하였다. Curcumin은 NF-kB p65의 핵내 이동을 차단하였고, 세포내 ROS 양을 감소시켰고, JNK 및 p38 인산화를 억제시켰다. 그러나 curcumin은 TNF 수용체 I및 II에 어떠한 영향도 미치지 못했다. 결 론 : Curcumin이 NF-kB 비활성화 및 p38과 JNK의 기능저하를 매개로 VCAM-1 및 ICAM-1의 발현을 억제할 수 있음을 알 수 있었다.

Protective Effects of Fermented Soymilk Extract on High Glucose-Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells

  • Yi, Na-Ri;Park, Min-Jung;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • We investigated whether the fermented soymilk extract (FSE) has protective effects against high glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVECs). FSE was prepared via fermentation of soymilk with Bacillus subtilis followed by methanol extraction. To determine the protective effect of FSE, oxidative stress was induced by exposing of HUVECs to the high glucose (30 mM) for 48 hr. Exposure of HUVECs to high glucose for 48 hr resulted in a significant (p<0.05) decrease in cell viability, catalase, SOD and GSH-px activity and a significant (p<0.05) increase in intracellular ROS level and thiobarbituric acid reactive substances (TBARS) formation in comparison to the cells treated with 5.5 mM glucose. However, at concentration of 0.1 mg/mL, FSE treatment decreased intracellular ROS level and TBARS formation, and increased cell viability and activities of antioxidant enzymes including catalase, SOD and GSH-px in high glucose pretreated HUVEC. These results suggest that FSE may be able to protect HUVECs from high glucose-induced oxidative stress, partially through the antioxidative defense systems.