• Title/Summary/Keyword: HTSC element

Search Result 37, Processing Time 0.034 seconds

Analysis on Current Limiting Characteristics of Flux-Lock Type SFCL Using a Transformer Winding (변압기 권선을 이용한 자속구속형 초전도 전류제한기의 전류제한 특성 분석)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.136-140
    • /
    • 2011
  • The fault current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL) using a transformer winding were investigated. The suggested flux-lock type SFCL consists of two parallel connected coils on an iron core and the transformer winding connected in series with one of two coils. In this SFCL, the high-TC superconducting (HTSC) element was connected with the secondary side of the transformer. The short-circuit experimental devices to analyze the fault current limiting characteristics of the flux-lock type SFCL using the transformer winding were constructed. Through the short-circuit tests, the flux-lock type SFCL using transformer winding was shown to perform more effective fault current limiting operation compared to the previous flux-lock type SFCL without the transformer winding from the viewpoint of the quench occurrence and the recovery time of the HTSC element.

Fault Current Limiting Characteristics of Separated and Integrated Three-Phase Flux-Lock Type SFCLs

  • Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.289-293
    • /
    • 2007
  • The fault current limiting characteristics of the separated and the integrated three-phase flux-lock type superconducting fault current limiters (SFCLs) were analyzed. The three-phase flux-lock type SFCL consisted of three flux-lock reactors and three $high-T_c$ superconducting (HTSC) elements. In the integrated three-phase flux-lock type SFCL, three flux-lock reactors are connected on the same iron core. On the other hand, three flux-lock reactors of the separated three-phase flux-lock type SFCL are connected on three separated iron cores. The integrated three-phase flux-lock type SFCL showed the different fault current limiting characteristics from the separated three-phase flux-lock type SFCL that the fault phase could affect the sound phase, which resulted in quench of the HTSC element in the sound phase. Through the computer simulation applying numerical analysis for its three-phase equivalent circuit, the fault current limiting characteristics of the separated and the integrated three-phase flux-lock type SFCLs according to the ground fault types were compared.

Simulation of Operational Characteristics in Integrated Three-Phase Flux-Lock Type SFCL (3상 일체화된 자속구속형 고온초전도 전류제한기의 동작특성 시뮬레이션)

  • Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung;Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.167-168
    • /
    • 2005
  • The operational characteristics of the integrated three-phase flux-lock type superconducting fault current limiter (SFCL) were analyzed. The suggested three-phase SFCL consisted of a three-phase flux-lock reactor and three high-Tc superconducting (HTSC) elements. The former has three windings wound on an iron core, each of which has the same turn's ratio between coil 1 and coil 2. The latter are connected in series with coil 2 of each phase. The integrated three-phase flux-lock type SFCL showed the operational characteristics that the fault phase could affect the sound phase, which resulted in quenching the HTSC element in the sound phase. Through the computer simulation applying numerical analysis for its three-phase equivalent circuit, the fault current limiting characteristics of the integrated three-phase flux-lock type SFCL according to the ground fault types were compared.

  • PDF

Operational Characteristics in Integrated Three-Phase Flux-Lock Type SFCL (3상 일체화된 자속구속형 고온초전도 전류제한기의 동작특성)

  • Lim, Sung-Hun;Han, Tae-Hee;Park, Hyoung-Min;Cho, Yong-Sun;Song, Jae-Joo;Choi, Myoung-Ho;Hwang, Jong-Sun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.112-113
    • /
    • 2006
  • The operational characteristics of the integrated three-phase flux-lock type superconducting fault current limiter (SFCL) were analyzed. The suggested three-phase SFCL consisted of a three-phase flux-lock reactor and three high-$T_c$ superconducting (HTSC) elements. The former has three windings wound on an iron core, each of which has the same turn's ratio between coil 1 and coil 2. The latter are connected in series with coil 2 of each phase. The integrated three-phase flux-lock type SFCL showed the operational characteristics that the fault phase could affect the sound phase, which resulted in quenching the HTSC element in the sound phase. Through the computer simulation applying numerical analysis for its three-phase equivalent circuit, the fault current limiting characteristics of the integrated three-phase flux-lock type SFCL according to the ground fault types were compared.

  • PDF

The Fault Current Limiting Characteristics According to Increase of Voltage in a Flux-Lock Type High-Tc Superconducting Fault Current Limiter (전압 증가에 따른 자속구속형 고온 초전도 전류제한기의 사고전류 제한 특성)

  • Cho, Yong-Sun;Park, Hyoung-Min;Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung;Choi, Hyo-Sang;Hyun, Ok-Bae;Hwang, Jong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2004.11d
    • /
    • pp.93-96
    • /
    • 2004
  • In this paper, we analyzed the current limiting characteristics according to increase of source voltage in the flux-lock type high-Tc superconducting fault current limiter (SFCL). The flux-lock type SFCL consisted of two coils, which were wound in parallel each other through an iron core, and high-Tc superconducting (HTSC) element connected with coil 2 in series. The flux-lock type SFCL has the characteristics better in comparison with the resistive type SFCL because the fault current in the flux-lock type SFCL can be divided into two coils by the inductance ratio of coil 1 and coil 2. The fault current limiting operation of the flux-lock type SFCL can be different due to winding direction of the two coils. The winding method where the decrease of linkage flux between two coils in the accident happens is called the subtractive polarity winding and the winding method in case of the increase of linkage flux is called the additive polarity winding. The fault current limiting experiments according to the source voltage were performed for these two winding methods. Through the comparison and the analysis of the experimental data, we confirmed that the quench time was shorter, irrespective of the winding direction as the source voltage increased and that the fault current and the HTSC's resistance increased as the amplitude of the source voltage increased. The additive polarity winding made the fast quench time and the lower resistance of HTSC element in comparison with the subtractive polarity winding. The fault current of the subtractive polarity winding was larger than that of the additive polarity winding. In conclusion, we found that the additive polarity winding reduced the burden of SFCL because the quench time was shorter and the fault current was smaller than those of the subtractive polarity winding.

  • PDF

A Study on Quench Characteristics of HTSC Element in Integrated Three-phase Flux-lock Type Superconducting Fault Current Limiter (일체화된 삼성자속구속형 고온초전도 전류제한기의 퀜치특성에 관한 연구)

  • Doo, Seung-Gyu;Du, Ho-Ik;Park, Chung-Ryul;Choi, Byoung-Hawn;Kim, Min-Ju;Kim, Yong-Jin;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.233-234
    • /
    • 2007
  • We investigated the quench characteristics in integrated three-phase flux-lock type superconducting fault current limiter (SFCL), which consisted of three-phase flux-lock reactor wound on one iron core with the same turn's ratio between coil 1 and coil 2 for each single phase. To study the quench characteristics of the SFCL, the experiments was performed on various fault type such as the single line-to-ground fault, the double line-to-ground fault, the triple line-to-ground fault. From the experimental results, the generated point of element resistances was different on various fault type.

  • PDF

Computer Simulation Analysis on Fault Current Limiting Characteristics of SFCL using Magnetic Coupling of Two Coils with Series Connection (직렬연결된 두 코일의 자기결합을 이용한 초전도 사고전류제한기의 사고전류제한 특성 컴퓨터 시뮬레이션 분석)

  • Lim, Sung-Hun;An, Jae-Min;Kim, Jin-Seok;Moon, Jong-Fil;Kim, Jae-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.213-216
    • /
    • 2007
  • The computer simulation for the fault current limiting characteristics of the superconducting fault current limiter (SFCL) using the magnetic coupling of two coils was performed. The magnetic fluxes generated from two coils were canceled out during a normal time. However, the resistance generation of high-$T_c$ superconducting (HTSC) element after a fault occurrence keeps up the magnetic fluxes of two coils and contributes to the fault current limiting operation. Through the computer simulation for the fault current limiting characteristics based on its electrical equivalent circuit, its operational current and the limiting impedance could be improved by adjusting the inductance ratio between two coils.

  • PDF

Analysis on Fault Current Limiting Characteristics of Flux-Lock Type SFCL Using Magnetic Flux Application Circuit (자기인가회로를 이용한 자속구속형 초전도한류기의 고장전류제한 특성 분석)

  • Go, Ju-Chan;Lim, Seung-Taek;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.37-41
    • /
    • 2017
  • In this paper, the fault current limiting characteristics of the flux-lock type SFCL (superconducting fault current limiter) using magnetic application circuit were analyzed. The flux-lock type SFCL has the structure to install the magnetic application circuit, which can increase the resistance of HTSC ($high-T_C$ superconducting element comprising) the SFCL. To analyze the fault current limiting effect of the flux-lock type SFCL through the magnetic flux application circuit, the flux-lock type SFCL either with the magnetic flux circuit or without the magnetic flux circuit was constructed and the fault current limiting characteristics of the SFCL were compared each other through the short-circuit tests.

Analysis on the Operation Characteristics and Protection Coordination between the Current Ratio Differential Relay for Line Protection and the Trigger-type SFCL in the Power Transmission System (송전급 초전도한류기의 적용에 따른 선로보호용 비율전류차동계전기의 동작특성 및 보호협조 분석)

  • Cho, Yong-Sun;Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.925-930
    • /
    • 2013
  • The fault current of the power transmission system is greater than that of the power distribution system. Therefore, the introduction of superconducting fault current limiter (SFCL) is more needed to reduce the increased fault current. The trigger-type SFCL consists of the high-temperature superconducting element (HTSC), the current limiting reactor (CLR) and the circuit breaker (CB). The trigger-type SFCL can be used to supplement the disadvantages of the resistive-type SFCL. The operation characteristics of the current ratio differential relay which is usually applied to the protection device of the power transmission system are expected to be affected under fault conditions and the applicability of the trigger-type SFCL. In this paper, we analyzed the operating characteristics, by the fault conditions, between the current ratio differential relay for line protection and the trigger-type SFCL in the power transmission system through the PSCAD/EMTDC simulation.