• Title/Summary/Keyword: HSDM

Search Result 9, Processing Time 0.031 seconds

Development of Optimum PAC Dose Prediction Program using $^{14}C$-radiolabled MIB and HSDM ($^{14}C$-radiolabeled MIB와 HSDM을 이용한 최적 PAC 투입량 예측프로그램의 개발)

  • Kim, Young-Il;Bae, Byung-Uk;Kim, Kyu-Hyoung;Hong, Hyun-Su;Westerhoff, Paul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1123-1128
    • /
    • 2005
  • NIB(methylisoborneol) is an earthy/musty odor compound produced as a second metabolite by cyanobacteria and actinomycetes. MIB is not removed by conventional water treatment(coagulation, sedimentation, filtration) and its presence in tap water, even at low ng/L levels, can result in consumer complaints. PAC(powdered activated carbon) can effectively remove MIB when the correct dose is applied. But, since most operators in water treatment plants apply a PAC dose and then adjust that dose depending on direct observation (odor detection) after treatment, the result is often under-dose or eve,-dose. In this study, kinetic and isotherm tests using $^{14}C$-radiolabeled MIB were performed to determine coefficients for the HSDM(homogeneous surface diffusion model), including liquid film mass transfer coefficient($K_f$) and surface diffusion coefficient ($D_s$). The HSDM gave a reasonable fit and allowed prediction with the experimental data. Base on the HSDM, the authors developed an optimum PAC dose prediction program using the Excel spreadsheet. When the developed program was applied at two water treatment plants, the PAC dose based on the experience of operators in the water treatment plant was significantly different from that recommended by the newly developed program. If operators are willing to use the optimum PAC dose prediction program, it should solve dosing problems.

Adsorption-Desorption Modeling of Pollutants on Granular Activated Carbon (오염물질에 대한 입상 활성탄의 흡·탈착 모델링)

  • Wang, Chang Keun;Weber, Walter J. Jr.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.279-285
    • /
    • 1993
  • It is important to understand the interrelationship between adsorption, equilibrium and mass transport in efficient design and operation of the granular activated carbon(GAC) adsorption systems. In this study, the micro-diameter-depth adsorption system(MIDDAS) technique was developed to estimate equilibrium and mass transport parameters, which were utilized to simulate adsorption and mass transport phenomena dynamically and mathematically. The homogeneous surface diffusion model(HSDM) utilizing the estimated equilibrium and mass transport parameters including the film transfer coefficients and surface diffusivities from the MIDDAS technique, successfully predicted competitive adsorption, desorption and chromatographic displacement effects. In the binary solute system of p-chlorophenol(PCP) and p-nitrophenol(PNP), PCP was displaced by PNP and the HSDM could predict successfully. While the HSDM described the desorption breakthrough curves for PCP, PNP and PTS well when complete reversible adsorption was assumed, the desorption breakthrough curves for DBS could be predicted after subsequent incorporation of the degree of irreversibility into the model simulations.

  • PDF

A study on strain improvement by protoplast fusion between amylase secreting yeast and alcohol fermenting yeast I. Isolation and characterization of fusant between S. cecevisiae and S. diastaticus (Amylase 분비효모와 alcohol 발효효모의 세포융합에 의한 균주의 개발 제1보. S. cerevisiae와 S. diastaticus간의 세포융합 및 융합체의 성질)

  • 서정훈;김영호;전도연;이종태
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.4
    • /
    • pp.305-310
    • /
    • 1986
  • To improve the starch fermentation ability of yeast, hybrids were introduced by protoplast fusion of S. cerevisiae and S. diastaticus. The protoplasts of parental auxotrophic cells were fused in the presence of 10 mM CaCl$_2$and 30% of polyethyleneglycol (M.W 4, 000). The frequencies of fusant formation varied depending upon the strains used and were 3.51$\times$10$^{-4}$ to 5.04$\times$10$^{-4}$ for the regenerated protoplasts. The strains capable of extensive starch hydrolysis produce only 10% to total fusants. The 4 strains were finally selected by the results of starch fermentation and genetic stability test. The DNA content and cell volume of the fusants were greater than those of the parental strains.

  • PDF

Evaluation of acetaldehyde removal performance of a hybrid adsorbent consisting of organic and inorganic materials (유무기 융복합 흡착제의 아세트알데하이드 제거 성능 평가)

  • Ahn, Hae Young;Lee, Yoon Kyoung;Song, JiHyeon
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.372-380
    • /
    • 2018
  • To abate the problem of odor from restaurants, a hybrid adsorbent consisting of organic and inorganic materials was developed and evaluated using acetaldehyde as a model compound was deveioped and evaluated. Powders of activated carbon, bentonite, and calcium hydroxide were mixed and calcinated to form adsorbent structure. The surface area of the hybrid adsorbent was smaller than that of high-quality activated carbon, but its microscopic image showed that contours and pores were developed on its surface. To determine its adsorption capacity, both batch isotherm and continuous flow column experiments were performed, and these results were compared with those using commercially available activated carbon. The isotherm tests showed that the hybrid adsorbent had a capacity 40 times higher than that of the activated carbon. In addition, the column experiments revealed that breakthrough time of the hybrid adsorbent was 2.5 times longer than that of the activated carbon. These experimental results were fitted to numerical simulations by using a homogeneous surface diffusion model (HSDM); the model estimated that the hybrid adsorbent might be able to remove acetaldehyde at a concentration of 40 ppm for a 5-month period. Since various odor compounds are commonly emitted as a mixture when meat is barbecued, it is necessary to conduct a series of experiments and HSDM simulations under various conditions to obtain design parameters for a full-scale device using the hybrid adsorbent.

A study on strain improvement by protoplast fusion between amylase secreting yeast and alcohol fermenting yeast - ?$\pm$. Alcohol and glucoamylase productivities of fusant between S. cerevisiae and S. diastaticus (Amylase 분비효모와 alcohol 발효효모의 세포융합에 의한 균주의 개발 - 제2보. S. cerevisiae와 S. diastaticus간의 융합체의 glucoamylase생성 및 alcohol발효)

  • 서정훈;김영호;전도연;이창후
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.4
    • /
    • pp.311-318
    • /
    • 1986
  • Glucoamylase and ethanol productivities of HSDD-170 and HSDM-119 formed by S. cerevisiae and S. diastaticus protoplast fusion were investigated. For the production of the glucoamylase, soluble starch as carbon source, yeast extract and C. S. L as nitrogen source added into the basal medium were favorable. The production of the enzyme reached at maximum after cultivation of the fusant for 4 days at 3$0^{\circ}C$, aerobically. The properties of glucoamylase produced by fusants were very similar to those produced by S. diastaticus as based on optimum temperature, pH stability. In alcohol fermentation from starch, strain HSDD-170 fermented starch faster than either of its parental strains. The maximum of alcohol yield in 15% of liquefied potato starch was 7.5% (v/v).

  • PDF

A Study on the methodology for Web-based Maintenance System Development of Light Rail Transit (웹기반의 경량전철 유지보수 정보화시스템 개발방법론에 대한 연구)

  • Lee, Ho-Yong;Han, Seok-Yoon;Cho, Hong-Shik;Cho, Bong-Kwan
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.722-729
    • /
    • 2007
  • The methodology for maintenance system development should overall be considered with all of task characteristic, schedule, and the technical condition of investment sources. This research applies Waterfall model to methodology for the development and construction of maintenance system through customizing the CD (Custom Development) procedure of "HSDM (Hyundai System Development Methodology)" based on information engineering. The waterfall model called as classic life cycle paradigm is defined for the sequent development procedure, which make progress a next step after that a previous step is admitted with thorough review. This model which is popular and the oldest paradigm is used for system development by four steps; demands analysis, design, construction, and maintenance. This methodology advances higher abstract step from higher lower step using top-down approach from concept definition to construction, which notices the end of a step whenever a step is over. Therefore, each step is exactly divided, and consequently the output is clearly yielded.

  • PDF

Removals of Formaldehyde by Silver Nano Particles Attached on the Surface of Activated Carbon (나노 은입자가 첨착된 활성탄의 포름알데히드 제거특성)

  • Shin, Seung-Kyu;Kang, Jeong-Hee;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.936-941
    • /
    • 2010
  • This study was conducted to investigate formaldehyde removals by silver nano-particles attached on the surface of granular activated carbon (Ag-AC) and to compare the results to those obtained with ordinary activated carbon (AC). The BET analysis showed that the overall surface area and the fraction of micropores (less than $20{\AA}$ diameter) of the Ag-AC were significantly decreased because the silver particles blocked the small pores on the surface of the Ag-AC. The formaldehyde removal capacity of the Ag-AC determined using the Freundlich isotherm was higher than that of AC. Despite the decreased BET surface area and micropore volume, the Ag-AC had the increased removal capacity for formaldehyde, presumably due to catalytic oxidation by silver nano-particles. In contrast, the adsorption intensity of the Ag-AC, estimated by 1/n in the Freundlich isotherm equation, was similar to that of the ordinary AC, indicating that the surface modification using silver nano-particles did not affect the adsorption characteristics of AC. In a column experiment, the Ag-AC also showed a longer breakthrough time than that of the AC. Simulation results using the homogeneous surface diffusion model (HSDM) were well fitted to the breakthrough curve of formaldehyde for the ordinary AC, but the predictions showed substantial deviations from the experimental data for the Ag-AC. The discrepancy was due to the catalytic oxidation of silver nano-particles that was not incorporated in the HSDM. Consequently, a new numerical model that takes the catalytic oxidation into accounts needs to be developed to predict the combined oxidation and adsorption process more accurately.

Adsorption Characteristics of Methyl Orange on Ginkgo Shell-Based Activated Carbon (은행 껍질 기반 활성탄의 메틸오렌지 흡착 특성)

  • Lee, Jeong Moon;Lee, Eun Ji;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.636-645
    • /
    • 2022
  • In this study, we investigated the adsorption characteristics of methyl orange (MO), an anionic dye, on ginkgo shell-based activated carbon (AC). For this purpose, ACs (GS-1, GS-2, and GS-4) with different textural properties were prepared using ginkgo shells and potassium hydroxide (KOH), a representative chemical activating agent. The correlation between the textural characteristics of AC prepared and the mixing ratio of KOH was investigated using nitrogen adsorption/desorption isotherms. The MO adsorption equilibrium experiment on the prepared ACs was conducted under different pH (pH 3~11) and temperature (298~318 K) conditions, and the results were investigated by Langmuir, Freundlich, Sips and temperature-dependent Sips equations. The feasibility of the MO adsorption treatment process of the prepared AC was also investigated using the dimensionless Langmuir separation factor. The heterogeneous adsorption properties of MO for the prepared AC examined using the adsorption energy distribution function (AED) were closely related to the system temperature and textural characteristics of AC. The kinetic results of the batch adsorption performed at different temperatures can be satisfactorily explained by the homogeneous surface diffusion model (HSDM), which takes into account the external mass transfer, intraparticle diffusion, and active site adsorption. The relationship between the activation energy value obtained by the Arrhenius plot and the adsorption energy distribution function value was also investigated. In addition, the adsorption process mechanism of MO on the prepared AC was evaluated using Biot number.

Volatile organic compounds emitted from printing processes and their removal by adsorption (인쇄업에서 배출되는 반응성 VOCs 종류와 흡착 제거 방법의 적용)

  • Ahn, Hae Young;Lee, Yoon Kyoung;Song, Ji Hyeon
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.396-403
    • /
    • 2018
  • In this study, volatile organic compounds (VOCs) emitted from printing industries were analyzed, and an inorganic adsorbent, ${\gamma}-alumina$, was selected for the effective control of the VOC emissions. Printing processes commonly require inks, thinners, and cleaners, and they were mixed organic solvents containing aromatic compounds, ketones, and alcohols. Therefore, toluene, methyl ethyl ketone (MEK), and isopropyl alcohol (IPA) were selected as model compounds for this study. The adsorptive properties using ${\gamma}-alumina$ were determined for the model compounds. Both batch isotherm and continuous flow column tests demonstrated that the adsorption capacity of MEK and IPA was 3~4 times higher than that of toluene. The column test performed at an inlet toluene concentration of 100 ppm showed that an 80% breakthrough for toluene was observed after 3 hours, but both MEK and IPA were continuously adsorbed during the same time period. A numerical model simulated that the ${\gamma}-alumina$ could remove toluene at a loading rate of 0.4 mg/min only for a 4-hour period, which might be too short of a duration for real applications. Consequently, lifetime enhancement for ${\gamma}-alumina$ must be implemented, and ozone oxidation and regeneration would be feasible options.