Browse > Article
http://dx.doi.org/10.14478/ace.2022.1101

Adsorption Characteristics of Methyl Orange on Ginkgo Shell-Based Activated Carbon  

Lee, Jeong Moon (Department of Chemical Engineering, Sunchon National University)
Lee, Eun Ji (Department of Chemical Engineering, Sunchon National University)
Shim, Wang Geun (Department of Chemical Engineering, Sunchon National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.6, 2022 , pp. 636-645 More about this Journal
Abstract
In this study, we investigated the adsorption characteristics of methyl orange (MO), an anionic dye, on ginkgo shell-based activated carbon (AC). For this purpose, ACs (GS-1, GS-2, and GS-4) with different textural properties were prepared using ginkgo shells and potassium hydroxide (KOH), a representative chemical activating agent. The correlation between the textural characteristics of AC prepared and the mixing ratio of KOH was investigated using nitrogen adsorption/desorption isotherms. The MO adsorption equilibrium experiment on the prepared ACs was conducted under different pH (pH 3~11) and temperature (298~318 K) conditions, and the results were investigated by Langmuir, Freundlich, Sips and temperature-dependent Sips equations. The feasibility of the MO adsorption treatment process of the prepared AC was also investigated using the dimensionless Langmuir separation factor. The heterogeneous adsorption properties of MO for the prepared AC examined using the adsorption energy distribution function (AED) were closely related to the system temperature and textural characteristics of AC. The kinetic results of the batch adsorption performed at different temperatures can be satisfactorily explained by the homogeneous surface diffusion model (HSDM), which takes into account the external mass transfer, intraparticle diffusion, and active site adsorption. The relationship between the activation energy value obtained by the Arrhenius plot and the adsorption energy distribution function value was also investigated. In addition, the adsorption process mechanism of MO on the prepared AC was evaluated using Biot number.
Keywords
Activated carbon; Adsorption isotherm; Adsorption kinetic; Ginkgo shell; Methyl orange;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. O. Fagbohun, Q. Wang, L. Spessato, Y. Zheng, W. Li, A. G. Olatoye, and Y. Cui, Physicochemical regeneration of industrial spent activated carbons using a green activating agent and their adsorption for methyl orange, Surf. Interfaces, 29, 101696 (2022).   DOI
2 K. O. Iwuozor, J. O. Ighalo, E. C. Emenike, L. A. Ogunfowora, and C. A. Igwegbe, Adsorption of methyl orange: A review on adsorbent performance, Curr. Res. Green Sustain. Chem., 4, 100179 (2021).   DOI
3 D. Ramutshatsha-Makhwedzha, A. Mavhungu, M. L. Moropeng, and R. Mbaya, Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater, Heliyon, 8, e09930 (2022).   DOI
4 A. Lunhong, Z. Chunying, and M. Lanying, Adsorption of methyl orange from aqueous solution on hydrothermal synthesized Mg-Al layered double hydroxide, J. Chem. Eng. Data, 56, 4217-4225 (2013).   DOI
5 R. Gong, J. Ye, W. Dai, X. Yan, J. Hu, X. Hu, S. Li, and H. Huang, Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon, Ind. Eng. Chem. Res., 52, 14297-14303 (2013).   DOI
6 K. J. Hwang, J. Y. Park, Y. J. Kim, G. Kim, C. Choi, S. Jin, N. S. Kim, J. W. Lee, and W. G. Shim, Adsorption behavior of dyestuffs on hollow activated carbon fiber from biomass, Sep. Sci. Tech., 50, 1757-1767 (2015).   DOI
7 L. Jiang, J. Yan, L. Hao, R. Xue, G. Sun, and B. Yi, High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors, Carbon, 56, 146-154 (2013).   DOI
8 M. T. Yagub, T. K. Sen, S. Afroze, and H. M. Ang, Dye and its removal from aqueous solution by adsorption: A review, Adv. Colloid Interface Sci., 209, 172-184 (2014).   DOI
9 B. Sun, Y. Yuan, H. Li, X. Li, C. Zhang, F. Guo, X. Liu, K. Wang, and X. S. Zhao, Waste-cellulose-derived porous carbon adsorbents for methyl orange removal, Chem. Eng. J., 371, 55-63 (2019).   DOI
10 Y. S. Yoon, K. Kang, S. J Park, and S. G. Hong, Torrefaction properties of unused agricultural residues as biomass fuel, J. Korean Soc. Agri. Eng., 59, 17-23 (2017).
11 L. Qin, L. Feng, C. Li, Z. Fan, G. Zhang, C. Shen, and Q. Meng, Amination/oxidization dual-modification of waste ginkgo shells as bio-adsorbents for copper ion removal, J. Clean. Prod., 228, 112-123 (2019).   DOI
12 S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309-319 (1938).   DOI
13 E. P. Barrett, L. G. Joyner, and P. P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73, 373-380 (1951).   DOI
14 M. M. Dubinin and L. V. Radushkevich, The equation of the characteristic curve of activated charcoal, Dokl. Akad. Nauk. SSSR, 55, 327-329 (1947).
15 S. Lowell, J. E. Shields, M. A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publishers, Netherlands, (2004).
16 S. Rattanapan, J. Srikram, and P. Kongsune, Adsorption of methyl orange on coffee grounds activated carbon, Energy Procedia, 138, 949-954 (2017).   DOI
17 K. J. Hwang, C. Im, D. W. Cho, S. J. Yoo, J. W. Lee, and W. G. Shim, Enhanced photovoltaic properties of TiO2 film prepared by polycondensation in sol reaction, RSC Adv., 2, 3034-3048 (2012).   DOI
18 J. Ma, F. Yu, L. Zhou, L. Jin, M. Yang, J. Luan, T. Yuhang, F. Haibo, Y. Zhiwen, and J. Chen, Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes, ACS Appl. Mater. Interfaces, 4, 5749-5760 (2012).   DOI
19 C. Tien, Adsorption Calculations and Modelling, Butterworth-Heinemann, London, England (1994).
20 D. D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, England (1998).
21 E. H. M. Cavalcante, I. C. M. Candido, H. P. de Oliveira, K. B. Silveira, T. V. de Souza Alvares, E. C. Lima, M. Thyrel, S. H. Larsson, and G. S. dos Reis, 3-Aminopropyl-triethoxysilane-functionalized tannin-rich grape biomass for the adsorption of methyl orange dye: Synthesis, characterization, and the adsorption mechanism, ACS Omega, 7, 18997-19009 (2022).   DOI
22 M. Thommes, K. Kaneto, A. V. Neimark, J. P. Olivier, and F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87, 1051-1069 (2015).   DOI
23 K. J. Hwang, W. S. Choi, S. H. Jung, Y. J. Kwon, S. Hong, C. Choi, J. W. Lee, and W. G. Shim, Synthesis of zeolitic material from basalt rock and its adsorption properties for carbon dioxide, RSC Adv., 8, 9524-9529 (2018).   DOI
24 W. G. Hong, K. J. Hwang, G. W. Jeong, S. D. Yoon, and W. G. Shim, Adsorption characteristics of carbon dioxide on chitosan/zeolite composite, Appl. Chem. Eng., 31, 179-186 (2020).
25 U .K. Traegner and M. T. Suidan, Evaluation of surface and film diffusion coefficients for carbon adsorption, Water Res., 23, 267-273 (1989).   DOI
26 K. R. Hall, L. C. Eagleton, A. Acrivos, and T. Vermeulen, Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions, Ind. Eng. Chem. Fund., 5, 212-223 (1966).   DOI
27 T. W. Weber and R. K. Chakravorti, Pore and solid diffusion models for fixed-bed adsorbers, AIChE J, 20, 228-238 (1974).   DOI
28 M. Jaroniec and R. Madey, Physical Adsorption on Heterogeneous Solids, Elsevier, Amsterdam, Netherland (1988).
29 W. Rudzinski and D. Everett, Adsorption of Gases on Heterogeneous Solid Surfaces, Academic Press, London, England (1991).
30 M. S. Balathanigaimani, W. G. Shim, K. H. Park, J. W. Lee, and H. Moon, Effects of structural and surface energetic heterogeneity properties of novel corn grain-based activated carbons on dye adsorption, Microporous Mesoporous Mater., 118, 232-238 (2009).   DOI
31 D. Roy and D. D. Adrian, A simplified solution technique for carbon adsorption model, Water Res., 27, 1033-1040 (1993).   DOI
32 I. N. Najm, Mathematical modeling of PAC adsorption processes, J. AWWA, 88, 79-89 (1996).   DOI
33 S. Baup, C. Jaffre, D. Wolbert, and A. Laplanche, Adsorption of pesticides onto granular activated carbon: determination of surface diffusivities using simple batch experiments, Adsorption, 6, 219-228 (2000).   DOI
34 F. Rouquerol, J. Rouquerol, K. Sing, P. Llewellyn, and G. Maurin, Adsorption by Powders and Porous solids: Principles, Methodology and Applications, 2nd ed., Academic Press, London (2013).
35 W. S. Guo, W. G. Shim, S. Vigneswaran, and H. H. Ngo, Effect of operating parameters in a submerged membrane adsorption hybrid system: experiments and mathematical modeling, J. Membr. Sci., 247, 65-74 (2005).   DOI
36 P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, VODE: A variable-coefficient ODE solver, SIAM J. Sci. Stat. Comp., 10, 1038-1051 (1989).   DOI
37 R. Ocampo-Perez, R. Leyva-Ramos, J. Mendoza-Barron, and R. M. Guerrero-Coronado, Adsorption rate of phenol from aqueous solution onto organobentonite: Surface diffusion and kinetic models, J. Colloid Interface Sci., 364, 195-204 (2011).   DOI
38 H. Kim, H. C. Park, and H. Moon, Adsorption of trihalomethane on activated carbon, HWAHAK KONGHAK, 33, 764-770 (1995).
39 W. G. Shim, C. Kim, J. W. Lee, J. J. Yun, Y. I. Jeong, H. Moon, and K. S. Yang, Adsorption characteristics of benzene on electro-spun-derived porous carbon nanofibers, J. Appl. Poly. Sci., 102, 2454-2462 (2006).   DOI
40 J. V. Villadsen and W. E. Stewart, Solution of boundary-value problems by orthogonal collocation, Chem. Eng. Sci., 22, 1483-1501 (1967).   DOI
41 M. A. M Khraisheh, Y. S. Al-Degs, S. J. Allen, and M. N. Ahmad, Elucidation of controlling steps of reactive dye adsorption on activated carbon, Ind. Eng. Chem. Res., 41, 1651-1657 (2002).   DOI
42 Y. Kim, J. Bae, H. Park, J. K. Suh, Y. W. You, and H. Choi, Adsorption dynamics of methyl violet onto granulated mesoporous carbon: Facile synthesis and adsorption kinetics, Water Res., 101, 187-194 (2016).   DOI
43 M. Suzuki and K. Kawazoe, Effective surface diffusion coefficients of volatile organics on activated carbon during adsorption from aqueous solution, J. Chem. Eng. Jpn., 8, 379-382 (1975).   DOI
44 H. Liang, H. Gao, Q. Kong, and Z. Chen, Adsorption equilibrium and kinetics of tetrahydrofuran+ water solution mixture on zeolite 4A, J. Chem. Eng. Data, 51, 119-122 (2006).   DOI