DOI QR코드

DOI QR Code

Adsorption Characteristics of Methyl Orange on Ginkgo Shell-Based Activated Carbon

은행 껍질 기반 활성탄의 메틸오렌지 흡착 특성

  • Lee, Jeong Moon (Department of Chemical Engineering, Sunchon National University) ;
  • Lee, Eun Ji (Department of Chemical Engineering, Sunchon National University) ;
  • Shim, Wang Geun (Department of Chemical Engineering, Sunchon National University)
  • 이정문 (순천대학교 공과대학 화학공학과) ;
  • 이은지 (순천대학교 공과대학 화학공학과) ;
  • 심왕근 (순천대학교 공과대학 화학공학과)
  • Received : 2022.10.06
  • Accepted : 2022.11.07
  • Published : 2022.12.10

Abstract

In this study, we investigated the adsorption characteristics of methyl orange (MO), an anionic dye, on ginkgo shell-based activated carbon (AC). For this purpose, ACs (GS-1, GS-2, and GS-4) with different textural properties were prepared using ginkgo shells and potassium hydroxide (KOH), a representative chemical activating agent. The correlation between the textural characteristics of AC prepared and the mixing ratio of KOH was investigated using nitrogen adsorption/desorption isotherms. The MO adsorption equilibrium experiment on the prepared ACs was conducted under different pH (pH 3~11) and temperature (298~318 K) conditions, and the results were investigated by Langmuir, Freundlich, Sips and temperature-dependent Sips equations. The feasibility of the MO adsorption treatment process of the prepared AC was also investigated using the dimensionless Langmuir separation factor. The heterogeneous adsorption properties of MO for the prepared AC examined using the adsorption energy distribution function (AED) were closely related to the system temperature and textural characteristics of AC. The kinetic results of the batch adsorption performed at different temperatures can be satisfactorily explained by the homogeneous surface diffusion model (HSDM), which takes into account the external mass transfer, intraparticle diffusion, and active site adsorption. The relationship between the activation energy value obtained by the Arrhenius plot and the adsorption energy distribution function value was also investigated. In addition, the adsorption process mechanism of MO on the prepared AC was evaluated using Biot number.

이 연구에서는 은행껍질기반 활성탄으로 음이온성 염료인 메틸오렌지(MO)의 흡착 특성을 조사하였다. 이를 위해 은행껍질과 대표적인 화학활성화제인 수산화칼륨(KOH)을 이용하여 서로 다른 기공 특성을 지닌 다공성 활성탄(GS-1, GS-2, GS-4)을 제조하였다. 제조한 활성탄의 구조적 특성값과 KOH 혼합비율과의 상관관계는 질소 흡/탈착등온선으로 조사하였다. 활성탄에 대한 MO 흡착 평형 실험은 서로 다른 pH (pH 3~11) 및 온도(298~318 K) 조건에서 실시하였으며 그 결과를 Langmuir, Freundlich, Sips 및 온도 의존 Sips식으로 살펴보았다. 그리고 Langmuir 무차원 분리계수값으로 제조한 활성탄의 MO 흡착처리공정의 타당성을 조사하였다. 흡착에너지분포함수(AED)로 비교 분석한 활성탄에 대한 MO의 불균일 흡착 특성은 온도와 활성탄의 구조적 특성과 밀접한 관련이 있었다. 서로 다른 온도에서 수행한 회분식 흡착 속도 실험 결과는 외부물질전달, 입자 내 확산 및 활성사이트의 흡착을 고려한 균일표면확산모델(HSDM)로 만족스럽게 설명할 수 있었다. 또한 표면확산계수값을 Arrhenius 플롯으로 나타내어 구한 활성화에너지와 흡착에너지분포 함수값과의 상관관계를 살펴보았다. 그리고 Biot 수를 이용하여 제조한 활성탄에 대한 MO의 흡착 공정 메커니즘을 평가하였다.

Keywords

Acknowledgement

이 논문은 순천대학교 교연비 사업에 의하여 연구되었습니다.

References

  1. E. O. Fagbohun, Q. Wang, L. Spessato, Y. Zheng, W. Li, A. G. Olatoye, and Y. Cui, Physicochemical regeneration of industrial spent activated carbons using a green activating agent and their adsorption for methyl orange, Surf. Interfaces, 29, 101696 (2022). https://doi.org/10.1016/j.surfin.2021.101696
  2. K. O. Iwuozor, J. O. Ighalo, E. C. Emenike, L. A. Ogunfowora, and C. A. Igwegbe, Adsorption of methyl orange: A review on adsorbent performance, Curr. Res. Green Sustain. Chem., 4, 100179 (2021). https://doi.org/10.1016/j.crgsc.2021.100179
  3. D. Ramutshatsha-Makhwedzha, A. Mavhungu, M. L. Moropeng, and R. Mbaya, Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater, Heliyon, 8, e09930 (2022). https://doi.org/10.1016/j.heliyon.2022.e09930
  4. A. Lunhong, Z. Chunying, and M. Lanying, Adsorption of methyl orange from aqueous solution on hydrothermal synthesized Mg-Al layered double hydroxide, J. Chem. Eng. Data, 56, 4217-4225 (2013). https://doi.org/10.1021/je200743u
  5. R. Gong, J. Ye, W. Dai, X. Yan, J. Hu, X. Hu, S. Li, and H. Huang, Adsorptive removal of methyl orange and methylene blue from aqueous solution with finger-citron-residue-based activated carbon, Ind. Eng. Chem. Res., 52, 14297-14303 (2013). https://doi.org/10.1021/ie402138w
  6. E. H. M. Cavalcante, I. C. M. Candido, H. P. de Oliveira, K. B. Silveira, T. V. de Souza Alvares, E. C. Lima, M. Thyrel, S. H. Larsson, and G. S. dos Reis, 3-Aminopropyl-triethoxysilane-functionalized tannin-rich grape biomass for the adsorption of methyl orange dye: Synthesis, characterization, and the adsorption mechanism, ACS Omega, 7, 18997-19009 (2022). https://doi.org/10.1021/acsomega.2c02101
  7. M. T. Yagub, T. K. Sen, S. Afroze, and H. M. Ang, Dye and its removal from aqueous solution by adsorption: A review, Adv. Colloid Interface Sci., 209, 172-184 (2014). https://doi.org/10.1016/j.cis.2014.04.002
  8. B. Sun, Y. Yuan, H. Li, X. Li, C. Zhang, F. Guo, X. Liu, K. Wang, and X. S. Zhao, Waste-cellulose-derived porous carbon adsorbents for methyl orange removal, Chem. Eng. J., 371, 55-63 (2019). https://doi.org/10.1016/j.cej.2019.04.031
  9. Y. S. Yoon, K. Kang, S. J Park, and S. G. Hong, Torrefaction properties of unused agricultural residues as biomass fuel, J. Korean Soc. Agri. Eng., 59, 17-23 (2017).
  10. L. Jiang, J. Yan, L. Hao, R. Xue, G. Sun, and B. Yi, High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors, Carbon, 56, 146-154 (2013). https://doi.org/10.1016/j.carbon.2012.12.085
  11. L. Qin, L. Feng, C. Li, Z. Fan, G. Zhang, C. Shen, and Q. Meng, Amination/oxidization dual-modification of waste ginkgo shells as bio-adsorbents for copper ion removal, J. Clean. Prod., 228, 112-123 (2019). https://doi.org/10.1016/j.jclepro.2019.04.249
  12. S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309-319 (1938). https://doi.org/10.1021/ja01269a023
  13. E. P. Barrett, L. G. Joyner, and P. P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73, 373-380 (1951). https://doi.org/10.1021/ja01145a126
  14. M. M. Dubinin and L. V. Radushkevich, The equation of the characteristic curve of activated charcoal, Dokl. Akad. Nauk. SSSR, 55, 327-329 (1947).
  15. S. Lowell, J. E. Shields, M. A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publishers, Netherlands, (2004).
  16. F. Rouquerol, J. Rouquerol, K. Sing, P. Llewellyn, and G. Maurin, Adsorption by Powders and Porous solids: Principles, Methodology and Applications, 2nd ed., Academic Press, London (2013).
  17. M. Thommes, K. Kaneto, A. V. Neimark, J. P. Olivier, and F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87, 1051-1069 (2015). https://doi.org/10.1515/pac-2014-1117
  18. S. Rattanapan, J. Srikram, and P. Kongsune, Adsorption of methyl orange on coffee grounds activated carbon, Energy Procedia, 138, 949-954 (2017). https://doi.org/10.1016/j.egypro.2017.10.064
  19. J. Ma, F. Yu, L. Zhou, L. Jin, M. Yang, J. Luan, T. Yuhang, F. Haibo, Y. Zhiwen, and J. Chen, Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes, ACS Appl. Mater. Interfaces, 4, 5749-5760 (2012). https://doi.org/10.1021/am301053m
  20. C. Tien, Adsorption Calculations and Modelling, Butterworth-Heinemann, London, England (1994).
  21. D. D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, England (1998).
  22. K. J. Hwang, C. Im, D. W. Cho, S. J. Yoo, J. W. Lee, and W. G. Shim, Enhanced photovoltaic properties of TiO2 film prepared by polycondensation in sol reaction, RSC Adv., 2, 3034-3048 (2012). https://doi.org/10.1039/c2ra01218a
  23. K. J. Hwang, W. S. Choi, S. H. Jung, Y. J. Kwon, S. Hong, C. Choi, J. W. Lee, and W. G. Shim, Synthesis of zeolitic material from basalt rock and its adsorption properties for carbon dioxide, RSC Adv., 8, 9524-9529 (2018). https://doi.org/10.1039/C8RA00788H
  24. W. G. Hong, K. J. Hwang, G. W. Jeong, S. D. Yoon, and W. G. Shim, Adsorption characteristics of carbon dioxide on chitosan/zeolite composite, Appl. Chem. Eng., 31, 179-186 (2020).
  25. K. R. Hall, L. C. Eagleton, A. Acrivos, and T. Vermeulen, Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions, Ind. Eng. Chem. Fund., 5, 212-223 (1966). https://doi.org/10.1021/i160018a011
  26. T. W. Weber and R. K. Chakravorti, Pore and solid diffusion models for fixed-bed adsorbers, AIChE J, 20, 228-238 (1974). https://doi.org/10.1002/aic.690200204
  27. M. Jaroniec and R. Madey, Physical Adsorption on Heterogeneous Solids, Elsevier, Amsterdam, Netherland (1988).
  28. W. Rudzinski and D. Everett, Adsorption of Gases on Heterogeneous Solid Surfaces, Academic Press, London, England (1991).
  29. M. S. Balathanigaimani, W. G. Shim, K. H. Park, J. W. Lee, and H. Moon, Effects of structural and surface energetic heterogeneity properties of novel corn grain-based activated carbons on dye adsorption, Microporous Mesoporous Mater., 118, 232-238 (2009). https://doi.org/10.1016/j.micromeso.2008.08.028
  30. K. J. Hwang, J. Y. Park, Y. J. Kim, G. Kim, C. Choi, S. Jin, N. S. Kim, J. W. Lee, and W. G. Shim, Adsorption behavior of dyestuffs on hollow activated carbon fiber from biomass, Sep. Sci. Tech., 50, 1757-1767 (2015). https://doi.org/10.1080/01496395.2015.1014056
  31. U .K. Traegner and M. T. Suidan, Evaluation of surface and film diffusion coefficients for carbon adsorption, Water Res., 23, 267-273 (1989). https://doi.org/10.1016/0043-1354(89)90091-2
  32. D. Roy and D. D. Adrian, A simplified solution technique for carbon adsorption model, Water Res., 27, 1033-1040 (1993). https://doi.org/10.1016/0043-1354(93)90067-R
  33. I. N. Najm, Mathematical modeling of PAC adsorption processes, J. AWWA, 88, 79-89 (1996). https://doi.org/10.1002/j.1551-8833.1996.tb06631.x
  34. S. Baup, C. Jaffre, D. Wolbert, and A. Laplanche, Adsorption of pesticides onto granular activated carbon: determination of surface diffusivities using simple batch experiments, Adsorption, 6, 219-228 (2000). https://doi.org/10.1023/A:1008937210953
  35. W. S. Guo, W. G. Shim, S. Vigneswaran, and H. H. Ngo, Effect of operating parameters in a submerged membrane adsorption hybrid system: experiments and mathematical modeling, J. Membr. Sci., 247, 65-74 (2005). https://doi.org/10.1016/j.memsci.2004.09.009
  36. W. G. Shim, C. Kim, J. W. Lee, J. J. Yun, Y. I. Jeong, H. Moon, and K. S. Yang, Adsorption characteristics of benzene on electro-spun-derived porous carbon nanofibers, J. Appl. Poly. Sci., 102, 2454-2462 (2006). https://doi.org/10.1002/app.24554
  37. J. V. Villadsen and W. E. Stewart, Solution of boundary-value problems by orthogonal collocation, Chem. Eng. Sci., 22, 1483-1501 (1967). https://doi.org/10.1016/0009-2509(67)80074-5
  38. P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, VODE: A variable-coefficient ODE solver, SIAM J. Sci. Stat. Comp., 10, 1038-1051 (1989). https://doi.org/10.1137/0910062
  39. M. A. M Khraisheh, Y. S. Al-Degs, S. J. Allen, and M. N. Ahmad, Elucidation of controlling steps of reactive dye adsorption on activated carbon, Ind. Eng. Chem. Res., 41, 1651-1657 (2002). https://doi.org/10.1021/ie000942c
  40. Y. Kim, J. Bae, H. Park, J. K. Suh, Y. W. You, and H. Choi, Adsorption dynamics of methyl violet onto granulated mesoporous carbon: Facile synthesis and adsorption kinetics, Water Res., 101, 187-194 (2016). https://doi.org/10.1016/j.watres.2016.04.077
  41. M. Suzuki and K. Kawazoe, Effective surface diffusion coefficients of volatile organics on activated carbon during adsorption from aqueous solution, J. Chem. Eng. Jpn., 8, 379-382 (1975). https://doi.org/10.1252/jcej.8.379
  42. H. Liang, H. Gao, Q. Kong, and Z. Chen, Adsorption equilibrium and kinetics of tetrahydrofuran+ water solution mixture on zeolite 4A, J. Chem. Eng. Data, 51, 119-122 (2006). https://doi.org/10.1021/je050263e
  43. R. Ocampo-Perez, R. Leyva-Ramos, J. Mendoza-Barron, and R. M. Guerrero-Coronado, Adsorption rate of phenol from aqueous solution onto organobentonite: Surface diffusion and kinetic models, J. Colloid Interface Sci., 364, 195-204 (2011). https://doi.org/10.1016/j.jcis.2011.08.032
  44. H. Kim, H. C. Park, and H. Moon, Adsorption of trihalomethane on activated carbon, HWAHAK KONGHAK, 33, 764-770 (1995).