• Title/Summary/Keyword: HRA

Search Result 103, Processing Time 0.022 seconds

Determining the complexity level of proceduralized tasks in a digitalized main control room using the TACOM measure

  • Inseok Jang;Jinkyun Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4170-4180
    • /
    • 2022
  • The task complexity (TACOM) measure was previously developed to quantify the complexity of proceduralized tasks conducted by nuclear power plant operators. Following the development of the TACOM measure, its appropriateness has been validated by investigating the relationship between TACOM scores and three kinds of human performance data, namely response times, human error probabilities, and subjective workload scores. However, the information reflected in quantified TACOM scores is still insufficient to determine the levels of complexity of proceduralized tasks for human reliability analysis (HRA) applications. In this regard, the objective of this study is to suggest criteria for determining the levels of task complexity based on logistic regression between human error occurrences in digitalized main control rooms and TACOM scores. Analysis results confirmed that the likelihood of human error occurrence according to the TACOM score is secured. This result strongly implies that the TACOM measure can be used to identify the levels of task complexity, which could be applicable to various research domains including HRA.

Development of Human Factor Risk Model for Use in Disaster System A Study on Safety Analysis (재난시스템에서 사용하기 위한 인적요인 위험 모델의 개발)

  • Park, Jong hun
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.227-228
    • /
    • 2022
  • 전통적인 HRA(Human Reliability Analysis)방법은 특정 애플리케이션 또는 산업을 염두에 두고 있으며. 또한 이러한 방법은 종종 복잡하며, 시간이 많이 걸리고 적용하는 데 비용이 많이 들며 직접 비교하기에는 적합하지 않다. 제안된 HFHM(Human Factors Hazard Model: 인적 요인 위험 모델)은 기검증되고 시간 테스트를 거친 FTA(Fault Tree Analysis:결함 트리 분석)및 ETA(Event Tree Analysis:이벤트 트리 분석)의 확률 분석 도구 및 새로 개발된 HEP(Human Error Probability:인적 오류 확률)예측 도구와 통합되고, 인간과 관련된 PSF(Performance Shaping Factors:성능 형성 요인)를 중심으로 새로운 접근 방식으로 개발되었다. 인간-시스템은 상호작용으로 인한 재난사고 가능성을 모델링하는 위험분석 접근법 HFHM은 다음과 같은 상용 소프트웨어 도구 내에서 예시되고 자동화된다. HFHM에서 생성된 데이터는 SE 분석가 및 설계에 대한 표준화된 가이드로 사용될 수 있다. 본 연구에서는 인적 위험을 예측하는 이 새로운 접근 방식을 통해, 전체 시스템에 대한 포괄적인 재난안전 분석을 가능하게 한다.

  • PDF

Dorsal Neck Muscle Fatigue Affects Cervical Range of Motion and Proprioception in Adults with the Forward Head Posture

  • Yeo, Sang-Seok;Kwon, Jung-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.5
    • /
    • pp.319-324
    • /
    • 2020
  • Purpose: This study was to investigate the effect of dorsal neck muscle fatigue on the cervical range of motion (CROM) and proprioception in adults with the forward head posture (FHP). Methods: Thirty pain-free subjects were enrolled in this study. All subjects were measured the forward head angle by taking the capture of the sagittal plane of their upper body to determine the FHP. Subjects were distributed into two groups: the FHP group (n=14) and Control group (n=16). All subjects were measured the CROM and the Head repositioning accuracy (HRA) for joint proprioception before and after inducing muscle fatigue of the dorsal neck. The CROM and HRA were measured in neck flexion, extension, right-left lateral flexion, and right-left rotation. Sorenson's test was used to induce muscle fatigue of the dorsal neck. Results: Total CROMs were significantly decreased after dorsal neck muscle fatigue in both groups (p<0.05). Total HRAs were significantly increased after dorsal neck muscle fatigue in the FHP group (p<0.05), but there were no significant differences in the control group (p>0.05). Total CROM changes were not significant differences between groups (p>0.05), but total HRA changes were significant differences between groups (p<0.05) except for right and left lateral flexion (p>0.05). Conclusion: Immediate CROM and proprioception reduction after the dorsal neck muscle fatigue were observed in adults with the FHP. Therefore, FHP can significantly affect the CROM and positioning consistency of cervical proprioception.

A New Dynamic HRA Method and Its Application (새로운 동적인간신뢰도 방법론과 적용)

  • Jae, Moo-Sung;Park, Chan-Kue
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.292-300
    • /
    • 1995
  • This paper present a new dynamic HRA (Human Reliability Analysis) method and its application for Quantifying the human error probabilities in implementing an accident management action. For comparisons of current HRA methods with the new method, the characteristics of THERP, HCR, and SLIM-MAUD, which are most frequently used methods in PSAs, are discussed. The action associated with the implementation of the cavity flooding during a station blackout sequence is considered for its application. This method is based on the concepts of the quantified correlation between the performance requirement and performance achievement. The MAAP 3.0B code and Latin Hypercube sampling technique are used to determine the uncertainty of the performance achievement parameter. Meanwhile, the value of the performance requirement parameter is obtained from interviews. Based on these stochastic distributions obtained, human error probabilities are calculated with respect to the various means and variances of the timings. It is shown that this method is very flexible in that it can be applied to any kind of the operator actions, including the actions associated with the implementation of accident management strategies.

  • PDF

원자력발전소 사고관리 방안의 인간 신뢰도 분석 및 오류 가능성 도출

  • 이용희
    • Proceedings of the ESK Conference
    • /
    • 1997.10a
    • /
    • pp.295-302
    • /
    • 1997
  • 본 논문은 원자력발전소 사고관리 방안의 평가를 위하여인간 신뢰도 분석(Human Reliability Analysis: HRA)을 수행하고, 그 문제점을 보완하기 위하여 가능한 오류에 대한 정성적인 인적오류 분석(Human Error Analysis: HEA)과정을 추가하였다. 인적오류 분석의 기본 체계(framework)를 기법들을 검토하여 사고관리 방안 평가에서 인적오류의 가능성을 분석하는 절차와 대표적인 사례에 대한 분석 결과을 예시하였다.

  • PDF

Human Reliability Analysis Using Reliability Physics Models (신뢰도 물리모델을 이용한 인간신뢰도분석 연구)

  • Moo-sung Jae
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.123-130
    • /
    • 2002
  • This paper presents a new dynamic human reliability analysis method and its application for quantifying the human error probabilities in implementing accident management actions. The action associated with implementation of the cavity flooding during a station blackout sequence is considered for its application. This method is based on the concept of the quantified correlation between the performance requirement and performance achievement. For comparisons of current HRA methods with the new method, the characteristics of THERP, HCR, and SLIM-MAUD, which m most frequency used method in PSAs, are discussed. The MAAP code and Latin Hypercube sampling technique are used to determine the uncertainty of the performance achievement parameter. Meanwhile, the value of the performance requirement parameter is obtained from interviews. Based on these stochastic obtained, human error probabilities are calculated with respect to the various means and variances of the things. It is shown that this method is very flexible in that it can be applied to any kind of the operator actions, including the actions associated with the implementation of accident management strategies.

A Validity Verification of Human Error Probability using a Fuzzy Model (퍼지모델을 이용한 인적오류확률의 타당성 검증)

  • Jang, Tong-Il;Lee, Yong-Hee;Lim, Hyeon-Kyo
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.137-142
    • /
    • 2006
  • Quantification of error possibility, in an HRA process, should be performed so that the result of the qualitative analysis can be utilized in other areas in conjunction with overall safety estimation results. And also, the quantification is an essential process to analyze the error possibility in detail and to obtain countermeasures for the errors through screening procedures. In previous studies for the quantification of error possibility, nominal values were assigned by the experts' judgements and utilized as corresponding probabilities. The values assigned by experts' experiences and judgements, however, require verifications on their reliability. In this study, the validity of new error possibility values in new MCR design was verified by using the Onisawa's model which utilizes fuzzy linguistic values to estimate human error probabilities. With the model of error probabilities are represented as analyst's estimations and natural language expression instead of numerical values. As results, the experts' estimation values about error probabilities are well agreed to the existing error probability estimation model. Thus, it was concluded that the occurrence probabilities of errors derived from the human error analysis process can be assessed by nominal values suggested in the previous studies. It is also expected that our analysis method can supplement the conventional HRA method because the nominal values are based on the consideration of various influencing factors such as PSFs.

Development of Human Error Probability Program for Human Error Analysis of Chemical Plants (화학 산업 시설에서의 인적 오류 분석을 위한 HEP 프로그램 개발)

  • Ko Jae Wook;Im Cha Soon;Park Kyo-Shik
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.4 s.18
    • /
    • pp.1-7
    • /
    • 2002
  • Human errors can take place in all levels that include the design, production, construction, operation and maintenance of plant facilities. It was found that the causes were concerned with the effects of human error. This study verified characteristics of the on-site operators and error mechanism, and used the classifying sheet to analyze human error that occurred in process. Also, by applying the ASEP(Accident Sequence Evaluation Program) HRA(Human Reliability Analysis) procedure, the algorithm to estimate the HEP and the ASEP HEP program to analyze human error in the plant were developed. If it is built in on-site, possible human error incident will be prevented and the systematic human error prevention strategy will be devised.

  • PDF

Analysis of Performance influencing Factor in Chemical Process Industry : A Practical Application (석유화학 산업에서의 수행영향인자 및 근본원인 분석 결과)

  • Kim Eun;Yu Kwang-Soo;Park Kyo-Shik
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2006.05a
    • /
    • pp.294-299
    • /
    • 2006
  • 한국에서는 석유화학 산업의 역사가 30년 이상이 되어 잠재적인 사고의 위험 가능성이 높아지고 있다. 지금까지의 석유화학 산업에서의 전통적인 위험성 평가와 시스템의 제어는 기계적인 결함에만 중점을 두었기 때문에 인간의 행동을 제어하는 것은 간과하여 왔다. 비록 자동화 기술가 제어기술의 발전이 필요함에도 불구하고 인간의 의사 결정 요소는 석유화학 산업에서 사고를 예방하는데 필수적이다. 대부분의 심각한 사고는 부적절한 인간의 행동과 안정장치의 기계적인 결함이 동시에 존재할 경우에 발생한다. A-HRA(Advanced Reliability Analyzer) 소프트 웨어는 석유화학 플랜트 내에서의 인적오류 확률을 분석하고 사고 데이터를 축적하기 위하여 개발되었다. A-HRA 프로그램을 이용하여 1960년대 이후부터 최근 까지 한국의 석유화학 산업에서 발생하여온 인적오류 사고 데이터를 입력하고 사고마다의 근본원인과 수행영향인자를 분석하였다. 이 본문에서는 Root cause Aanlysis을 통한 결과와 PIF(Performance Influencing Factor) 평가 결과를 보여준다. 이 분석 결과는 석유화학 산업의 안전을 극대화 시키면서도 인적오류 제어를 통하여 안전비용을 최저화 시킬 수 있는 대책을 제시할 것이다.

  • PDF