This study presents a sensitive and reliable method for determining tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC) residues in shrimp samples. A two-step process involving liquid-liquid extraction (LLE) followed by solid-phase extraction (SPE) was developed prior to HPLC analysis. The target analytes were effectively extracted using EDTA/McIlvaine buffer (pH 4.0): methanol (80:20, %v/v), with subsequent clean-up using a C18 SPE cartridge. HPLC separation was conducted on a C18 column (250 mm × 4.6 mm i.d., 5 ㎛) at 30 ℃, using 0.01 % trifluoroacetic acid (A) and acetonitrile (B) as the mobile phase. A gradient elution protocol was applied, transitioning from 85(A):15(B) %v/v to 70(A):30(B) %v/v at 7 min, with a 5 min hold, followed by adjustment to 85(A):15(B) %v/v for 13-14 min. The detection was performed using photodiode array (PDA) at 365 nm with a flow rate of 1.0 mL/min. The calibration curves exhibited good linearity within a concentration range of 0.4-6.0 ㎍/mL (R2 > 0.995). The limits of detection (LOD) for TC, OTC, and CTC in shrimp were 0.034, 0.029, and 0.021 ㎍/mL, respectively. The limits of quantitation (LOQ) for TC, OTC, and CTC were found to be 0.114, 0.097, and 0.071 ㎍/mL, respectively. Recoveries of TC, OTC, and CTC from spiked shrimp samples ranged from 91.0 % to 95.5 %, 92.4 % to 97.2 %, and 93.3 % to 96.6 %, respectively. This method was successfully applied to the determination of TC, OTC, and CTC residues in shrimp samples sourced from various local markets.
본 연구는 타우 PET용 방사성의약품으로 개발된 $^{18}F-THK5351$의 임상적용을 위하여 상용화된 자동 합성장치에 적용한 표지방법을 개발하고자 하였다. $^{18}F-THK5351$의 표지법 개발은 HPLC 분리정제 전 표지반응물의 유기용매, 불순물 및 미반응 물질을 제거하기 위해 고체상 추출 카트리지를 사용하여 정제하는 과정을 포함한 방법(method I)과 전처리 정제과정을 포함하지 않은 방법(method II)으로 나누어 진행하였다. $^{18}F-THK5351$ 표지는 $Sep-Pak^{(R)}$ QMA 카트리지를 사용하여 흡착한 불소-18 음이온을 $K_{2.2.2}/K_2CO_3$으로 용출한 후 $100^{\circ}C$에서 진공상태와 헬륨의 흐름하에 건조한 후 표지 전구체와 $110^{\circ}C$에서 10분간 반응시켰다. 반응 후 1 N HCl을 첨가하여 보호기를 제거한 후 0.8 M $CH_3COOK$를 사용하여 표지 반응물을 중화하였다. 이후 전처리 정제의 유무에 따라 method I과 method II로 진행하였다. Method I에서 전처리 정제 과정의 최적화를 위해 $Sep-Pak^{(R)}$ tC18과 $Oasis^{(R)}$ HLB 고체상 추출 카트리지를 사용하여 비교한 결과 $Sep-Pak^{(R)}$ tC18 카트리지는 57.2%의 표지 반응물이 빠져 나갔고, $Oasis^{(R)}$ HLB 카트리지는 40.6%의 표지 반응물이 빠져나가는 것을 확인할 수 있었다. Method I 표지방법의 방사화학적 수율은 $23.8{\pm}1.9%$(decay-corrected, n=4) 이었고, method II 표지방법의 방사화학적 수율은 $31.9{\pm}6.7%$(decay-corrected, n=10) 이었다. 본 연구를 통해 전처리 정제과정을 거쳐 HPLC로 분리정제하는 방법과 전처리 정제과정을 거치지 않고 표지반응물을 바로 HPLC 정제하는 표지방법을 상용화된 자동합성장치를 사용하여 성공적으로 개발하였다. 하지만 전처리 정제과정을 포함한 표지방법은 표지반응물의 손실이 많아 방사화학적 수율이 낮아지는 단점을 발견하였다. 본 연구에서 개발된 전처리 정제과정이 생략된 $^{18}F-THK5351$의 표지방법은 향후 통상적으로 생산 시 보다 유용한 표지방법으로 사용될 것으로 기대된다.
본 연구에서는 음이온 고체상 추출법 (AE SPE; anion exchange solid phase extraction)을 사용하여 간섭요인을 제거한 후, 친화 크로마토그래피 AF HPLC; affinity high performance liquid chromatography)와 유도결합 플라스마 질량분석법 (ICP/MS; inductively coupled plasma/mass spectrometry)을 사용하여 한국인의 혈청에서의 셀레노 단백질을 분리하고 정량하였다. 먼저 동위원소 희석법으로 셀레늄 총량을 분석한 결과, 건강한 한국 사람의 혈청내 평균농도는 $94.3{\pm}2.3ngg^{-1}$ 이었다. AE SPE와 AF 컬럼을 online으로 연결하여 셀레노단백질인 glutathione peroxidase (GPx), selenoprotein P (SelP), selenoalbumin (SeAlb)을 분리하고, 후 컬럼 동위원소 희석법 (PC ID; post column isotope dilution)으로 정량하였다. 혈청 인증표준물인 BCR-637을 분석한 결과 전체 셀레노 단백질의 합은 $85.4{\pm}3.4ngg^{-1}$으로 문헌값인 $81{\pm}7ngg^{-1}$과 일치하는 결과를 얻을 수 있었다. 20 명의 건강한 한국인의 혈청에서 얻은 셀레노 단백질 GPx, SelP 및 SeAlb 의 농도는 각각 $12.1{\pm}1.4ngg^{-1}$, $57.2{\pm}2.0ngg^{-1}$, 그리고 $20.0{\pm}1.9ngg^{-1}$ 이었으며 이들의 합인 $89.3ngg^{-1}$은 셀레늄의 총량값인 $94.3ngg^{-1}$과 거의 같은 값으로 혈청에서의 셀레늄은 주로 셀레노 단백질로 구성되어 있음을 알았다. 이 중 GPx의 농도는 간섭을 제거하기 전인 $25.0ngg^{-1}$에 비해 50% 이상 크게 감소하였는데 이로서 간섭은 주로 GPx에 포함되어 있음을 확인할 수 있었다. AE SPE는 간섭요인인 Cl과 Br을 제거 하는데 매우 효과적임을 보여주었다.
농산물중 pyribencarb와 그 대사물 KIE-9749의 잔류분석법을 개발하였다. 분석법 개발에 사용된 농산물은 5대 작물군의 대표작물인 사과, 고추, 감자, 현미, 대두와 잔류허용기준이 설정된 배, 복숭아, 오이, 포도였다. 각 농산물은 아세톤으로 추출하였으며 액-액분배를 이용하여 1차 정제하고 Florisil solid phase extraction (SPE) cartridge와 aminopropyl SPE cartridge를 이용하여 2차 정제를 실시하는 조건을 확립하였다. 기기분석 조건은 HPLC/UVD 265 nm 파장에서 acetonitrile과 물을 이동상으로 사용하여 확립하였다. 확립된 분석법을 분석자를 달리하여 검증한 결과 pyribencarb의 회수율과 RSD값은 78~108%, 2.7~12.2%였으며, KIE-9749의 회수율과 RSD값은 74~114%와 1.7~15.0%를 보였다. 분석법의 정량한계(LOQ)는 두 성분 모두 $0.05{\mu}g/g$이었으며 LC/ESI-MS/MS를 사용하여 확립된 정성조건에서 방해 피크는 발견되지 않았다. 확립된 분석법은 pyribencarb와 그 대사물 KIE-9749에 대한 농산물의 안전성 검사를 위해 사용될 수 있을 것이다.
다환방향족탄화수소는 환경오염이나 식품의 제조공정 과정 중에 생성될 수 있으며, 홍삼은 수증기로 찌고 건조하여 만들어진다. 시료를 핵산으로 추출한 후 물로 세척하고 후로리실 SPE 카트리지로 정제한 후 고속액체크로마토그래피/형광검출기로 분석하였다. 이동상으로는 아세토니트릴과 물의 혼합용액(8:2)을 사용하였으며 형광검출기의 여기파장은 294 nm이었고 형광파장은 404 nm이었다. 평균 회수율은 105%이었으며, 상대표준편차는 0.5이었다. 대상 식품인 홍삼음료 중 벤조피렌은 검출되지 않았다.
In order to extract the curcuminoid such as curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) in turmeric (Curcuma longa), solvent extraction methods (dipping and ultrasonic extraction method) and solid-phase extraction (SPE) were used. RP-HPLC (reverse-phase high-performance liquid chromatography) and TLC (thin-layer chromatography) were used for identification and analysis the three curcuminoid. From the experimental results, it is evident that the percentage of curcuminoid extracted from turmeric by ultrasonic extraction method was higher than dipping method. The percentage of curcumin extracted from turmeric by pure methanol was higher than any aqueous methanolic composition. Moreover, the total peak area of three curcuminoid was above 92% in RP-HPLC using solid-phase extraction. These results will form a database for investigating the constituents of natural products and the resources of pharmaceutical, nutrition, and cosmetic products.
먹는물(정수) 중에 잔류하는 버지니아마이신을 비롯한 macrolide 계열 의약물질 3종과 시메티딘을 동시에 정량 및 정성 분석하는 방법을 확립하였다. HLB 카트리지를 사용하여 분석물질을 추출/정제 및 농축한 후, HPLC/ESI-MS/MS를 이용하여 4종의 물질들을 효과적으로 분리하고 감도 좋게 검출할 수 있었다. 정량분석을 위해서 0.01~2.0 ng/mL 범위에서 $r^2$=0.995이상의 높은 직선성을 나타내는 검량선을 얻었으며, 시메티딘(37.7~48.1%)을 제외한 macrolide 계열 3종 의약물질은 64.7~118.1% 범위의 양호한 회수율을 나타내었다. 바탕 정수에 소량 첨가하여 얻은 분석방법의 검출한계와 정량한계는 각각 1.6~74.8 pg/mL 와 5.5~249.7 pg/mL 범위의 높은 감도를 나타내었다.
Oxytetracycline, tetracycline, chlortetracycline and doxycycline in honey were separated by solid phase extraction (SPE) and determined with high performance liquid chromatography (HPLC) with UV/Visible detector. Analysis was carried out using following conditions: XTerra $C_8$ column $(3.9\times150mm\;i.d. 5{\mu}m)$, mobile phase composed of 0.01M oxalic acid : methanol : acetonitrile (820 : 80 : 100, v/v/v), isocratic pump at a flow rate of 0.9 ml/min. and $50{\mu}l$ of injection volume, UV/Visible detector with wavelength of 360nm. The calibration curves of four tetracyclines showed linearity $(\gamma^2>0.999)$ at concentration range of $100\~1,000 ng/ml$. The recoveries in fortified honey represented more than $70\%$ with low coefficient of variation $(<10\%)$ for concentration range of four tetracyclines. The detection limits for oxytetracycline, tetracycline, chlortetracycline and doxycycline were 13.8, 14.6, 26.2 and 24.9ng/g in acacia honey. respectively. We also monitored tetracyclines residue in domestic honey [n : 38, acacia (20), wild flower (18) ] and foreign honey [n=22, legally distributed (13), illegally distributed (9)] using modified Charm II screening and HPLC confirmation methods. Seven of the 60 samples $(11.7\%)$ were suspect positive using modified Charm II screening test. Chlortetracycline residue was found in one foreign honey (illegally distributed) tested at concentrations of 0.22 ppm. Conclusively, for more effective control of tetracyclines used in beekeeping should be further survey for residues in honey and also national guidelines (maximum residue limit : MRL) and methods should be obligatory.
축산식품 고기내의 잔류항생물질을 신속하고 간편하고 정확하게 분석하기 위한 시험법 개발 을 목적으로 하였다. 축산식품내의 일반적인 잔류항생물질에 대한 지금까지의 분석법으로는 Bioassay법, TLC법, ELISA법, GC법 및 HPLC법 등이 있지만 Streptomycin/Dihydro streptomycin, Neomycin에 대한 HPLC법은 거의 확립되어 있지 않은 실정이다. 우리나라의 공인 검사법으로는 Bioassay법 및 HPLC법 등이 있지만 그러나 지금까지의 방법으로는 검출감도가 낮은 것이 큰 문제점으로 되어 왔다. 본 연구에서는 DST에 대한 HPLC법에 대한 보고한 P. Edder 방법 중에 clean-up과정 및 이동상 조건을 대폭 수정하여 DST의 분리 및 검출감도를 낮추려고 시도하였다. 본 연구에 사용된 유도체화 장치 Post-Column Derivatization Instrument PCX 5100 (Pickering Laboratories, Inc.)의 컬럼온도는 $40^{\circ}C$, 오븐온도 $55^{\circ}C$, reagent 유속 0.6ml/min mobile phase 유속 0.8ml/min으로 검출기는 형광검출기를 이용하여 DST 검출에 대해 만족할 만한 결과를 얻었다. 이때의 분석소요시간은 약 15분이었다. 표준시료 DST의 검량선은 넓은 농도범위(0.02${\sim}$1.0ppm)에서 양호한 직선성을 나타냈다. 본 시험법에 의한 검출한계는 limit of detection (LOD)은 0.02ppm이었으며, 적어도 고기에서의 MRL이 0.6ppm임을 감안하면 DST를 정량적으로 정도 좋게 측정할 수 있다는 것을 확인했다. 상기의 조건하에서 실제시료인 고기에 표준 DST를 1ppm을 spiking한 후 SPE상에서 SCX(Strong cation exchange column)을 통한 clean-up과정을 거친 후의 DST의 limit of quantification(LOQ)는 약 0.47ppm이었으며, 이에 대한 회수율은 97.7%(n= 8)를 나타냈다. 실제 codex에서 권장한 고기의 MRL이 0.6ppm인 점을 감안하면 codex 권고치에 도달할 수 있는 것으로 판단되었다. 따라서 본 연구에서 개발된 시험법은 지금까지 국내적으로 DST에 대한 시험법이 확립되어 있지 않은 것으로 이와 아울러 간편한 parallux와 병용해 DST에 대한 정량 및 정성 분석을 유도체화 장치 및 형광검출기를 이용해 잔류항생물질 DST에 대한 분석시험법의 개발이 가능하다고 여겨진다.
축산식품(우유)내의 잔류항생물질을 신속하고 간편하고 정확하게 분석하기 위한 시험법 개발을 목적으로 하였다. 축산식품내의 일반적인 잔류항생물질에 대한 지금까지의 분석법으로는 Bioassay법, TLC법, ELISA법, GC법 및 HPLC법 등이 있지만 Streptomycin/dihydrostreptomycin, neomycin에 대한 HPLC법은 거의 확립되어 있지 않은 실정이다. 우리나라의 공인 검사법으로는 Bioassay법 및 HPLC법등이 있지만 그러나 지금까지의 방법으로는 검출감도가 낮은 것이 큰 문제점으로 되어 왔다. 본 연구에서는 STP에 대한 HPLC법에 대한 보고한 Edder 방법 중에 clean-up 과정 및 이동상 조건을 대폭 수정하여 STP의 분리 및 검출감도를 낮추려고 시도하였다. 본 연구에 사용된 유도체화 장치 Post-Column Derivatization Instrument PCX 5100 (Pickering La-boratories, Inc.)의 컬럼 온도는 $40^{\circ}C$, 오븐온도 $55^{\circ}C$, 유도체화 용매 유속 0.6ml/min 이동상 유속 0.8ml/min으로 검출기는 형광검출기를 이용하여 STP 검출에 대해 만족할 만한 결과를 얻었다. 이때의 분석소요시간은 약 15분이었다. 표준시료 STP의 검량선은 넓은 농도범위(0.02${\sim}$1.0ppm)에서 양호한 직선성을 나타냈다. 본 시험법에 의한 검출한계는 limit of detection(LOD)은 0.02ppm이었으며, 적어도 우유에서의 MRL이 0.6ppm임을 감안하면 STP를 정량적으로 정도 좋게 측정할 수 있다는 것을 확인했다. 상기의 조건하에서 실제시료인 우유에 표준 STP를 0.5ppm을 spiking한 후 SPE상에서 SCX(Strong cation exchange column)을 통한 clean-up과정을 거친 후의 STP의 limit of quantification(LOQ)는 약 0.44ppm이었으며, 이에 대한 회수율은 89.7${\pm}$2.3%(n=6)를 나타냈다. 실제 CODEX에서 권장한 우유의 MRL이 0.6ppm인 점을 감안하면 CODEX권고치에 도달할 수 있는 것으로 판단되었다. 따라서 본 연구에서 개발 된 시험법은 지금까지 국내적으로 STP에 대한 시험법이 확립되어 있지 않은 것으로 이와 아울러 간편한 parallux와 병용해 STP에 대한 정량 및 정성 분석을 유도체화 장치 및 형광검출기를 이용해 잔류항생물질 STP에 대한 분석시험법을 개발하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.