• Title/Summary/Keyword: HOOPS

Search Result 68, Processing Time 0.029 seconds

Shear strength of full-scale steel fibre-reinforced concrete beams without stirrups

  • Spinella, Nino
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.365-382
    • /
    • 2013
  • Although shear reinforcement in beams typically consists of steel bars bent in the form of stirrups or hoops, the addition of deformed steel fibres to the concrete has been shown to enhance shear resistance and ductility in reinforced concrete beams. This paper presents a model that can be used to predict the shear strength of fibrous concrete rectangular members without stirrups. The model is an extension of the plasticity-based crack sliding model originally developed for plain concrete beams. The crack sliding model has been improved in order to take into account several aspects: the arch effect for deep beams, the post-cracking tensile strength of steel fibre reinforced concrete and its ability to control sliding along shear cracks, and the mitigation of the shear size effect due to presence of fibres. The results obtained by the model have been validated by a large set of experimental tests taken from literature, compared with several models proposed in literature, and numerical analyses are carried out showing the influence of fibres on the beam failure mode.

Evaluation of Axial Behavior of Columns Strengthened with Different Transverse Reinforcements in Jacket Section (확대단면에서의 띠철근 배근 방법에 따른 보강 기둥의 중심 축하중 거동 평가)

  • Hwang, Yong-Ha;Yang, Keun-Hyeok;Sim, Jae-Il;Choi, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.81-88
    • /
    • 2018
  • The present study evaluated the effective arrangement approach of transverse reinforcement in the jacket section for seismic strengthening of reinforced concrete columns. To simulate the full-scale columns, the section dimensions were determined as $450{\times}450mm$ for non-seismic existing columns and $750{\times}750mm$ for section enlargement strengthening columns. Over-lapped channel-shape bars and prefabricated bar units were proposed for closed-hoops in the jacket section, and conventional cross-ties anchored into existing columns and V-ties were considered for the supplementary ties. Test results showed that the axial capacity of the existing column and section enlargement columns with over-lapped channel-shape hoops was similar to the nominal strength calculated using ACI 318-14 procedure whereas the section enlargement column with prefabricated bar units possessed 1.25 times higher axial capacity than the nominal prediction. Furthermore, the axial ductility ratio of the section enlargement column with prefabricated bar unit was 139% higher than that of the existing column despite the potential size effect on ductility of concrete. Thus, it can be concluded that the developed prefabricated bar unit technique is practically useful for preventing the premature buckling of longitudinal reinforcement and confining core concrete in the section enlargement strengthening columns.

Constructability and Economic Evaluation of Continuous Hoop Reinforcement Method

  • Kang, Su-Min;Park, Sung-Woo;Jang, Se-Woong;Jin, Jong-Min;Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.291-305
    • /
    • 2013
  • This paper presents the continuous hoop reinforcement method as a means to overcome the difficulty of rebar construction due to the seismic detail of lateral reinforcement. Because the continuous hoop has no seismic hook, and there is less interference during the rebar work, rebar quantities and construction time can be reduced. Since the details of column and beam continuous hoops are different from those of conventional lateral reinforcements, the construction method should be developed through mock-up tests. The length of the beam mock-up is 8m and the section size is $500mm{\times}700mm$, the height of the column mock-up is 2.8m and 4m, and the section size is $800{\times}800mm$. The length and the size are determined based on the elements that are generally used in reinforced concrete basement parking lots and office buildings. The results of the mock-up test showed that the quantities of rebar could be reduced by 20% and the time could be reduced by up to 40% compared with conventional lateral reinforcements.

Confinement of Columns using Headed Bars (Headed Bars를 활용한 기둥의 구속효과에 대한 연구)

  • 김영훈;윤영수;데니스미첼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.929-934
    • /
    • 2002
  • Eight full-scale columns were constructed and tested under monotonic axial compression loading to investigate the influence of headed bars on the confinement of the concrete. One column represented a column with no transverse reinforcement and another column had poor detailing and little confinement. A third column contained seismic hoops and crossties, which represented current detailing practice for significant confinement. A fourth column test is conducted to investigate the response with the seismic crossties replaced by headed bars. Two column specimens were constructed and tested with all of the transverse reinforcement provided by headed bars. These six specimens enabled an assesment of the effectiveness of headed bars in confining the concrete. It was found that the use of headed bars improved the confinement of the columns. Two additional specimens were constructed without any transverse reinforcement. These columns were later retrofitted, by drilling horizontal holes in the columns, adding special headed bars (one head fixed and the other head threaded) and then filling the drilled holes with epoxy. These retrofitted specimens with these added headed bars provided insight into the rehabilitation of older structures containing poorly detailed columns. All of the test specimens were instrumented to determine strain localization during failure and to monitor the strain in the longitudinal and transverse reinforcement.

  • PDF

A Study on the Architectural Construction of Balenciaga's works (Balenciaga의 작품에 나타난 건축적 형태미에 관한 연구)

  • 장애란
    • Journal of the Korean Society of Costume
    • /
    • v.21
    • /
    • pp.5-18
    • /
    • 1993
  • The purpose of this study is to identify the architectural construction of Balenciaga's works. He was perfectionist in tailoring which was based on architectural thought, and couturier who could design, cut, sew and fit a whole gar-ment. Balenciaga has never followed any fashion trend but his own. He designed from within himself, according to his own sensitivity to fashion. Like Chanel, he mad clothes in which women can be comfortable, move in, and get on and off with a minimum of effort. He ap-plied radical shapes to flattering ends, for his clothes echoed movements and gestures, never determined them. He achieved the perfect harmony between the body and the garment, freeing the spirit of the woman within. Reflec-tion his respect for women, Balenciaga never contorted or restriced their bodies. He did not depend on hoops and petticoats to hold out the skirts of his evening dresses but on well-balanced, architectural construction. Therefore in order to identify the architec-tural consturuction, this study hypothesizes (1) the effect of mass and volume, (2) the ef-fect of weight and support, (3) the effect of complexity and simplicity, (4) the effect of line and rhythm etc. The architectural beauty of form in Balenciaga's works are especially based on simplicity and support.

  • PDF

Effects of Lap Splice Details on Seismic Performance of RC Columns (RC기둥의 내진성능에 미치는 겹침 이음상세의 영향)

  • Kim, Chul-Goo;Park, Hong-Gun;Kim, Tae-Wan;Eom, Tae-Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.351-360
    • /
    • 2016
  • In regions of low-to-moderate seismicity, various types of lap splices are used for longitudinal reinforcement of columns at the plastic hinge zones. The seismic performance of such lap spliced columns, such as strength, deformation capacity, and energy dissipation, is affected by material strengths, longitudinal re-bar size, confinement of hoops, lap splice location, and lap splice length. In the present study, cyclic loading tests were performed for columns using three types of lap splices (bottom offset bar splice, top offset bar splice, and splice without offset bend). Lap splice length($40d_b$ and $50d_b$) was also considered as test parameters. Ties with 90-degree end hooks were provided in the lap splice length. The test results showed that strength, deformation capacity, and energy dissipation of columns significantly differed depending on the details and the length of lap splices. The bottom offset bar splice showed high ductility and energy dissipation but low strength; on the other hand, the top offset bar splice and the splice without offset bend showed high strength but moderate ductility and energy dissipation.

The effects of stirrups and the extents of regions used SFRC in exterior beam-column joints

  • Gencoglu, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.223-241
    • /
    • 2007
  • Seven full-scale exterior beam-column joints were produced and tested under reversible cyclic loads to determine. Two of these seven specimens were produced using ordinary reinforced concrete (RC). Steel Fiber Reinforced Concrete (SFRC) was placed in three different regions of the beams of the rest five specimens to determine the extent of the region where SFRC is the most effective. The extent of the region of SFRC was kept constant at the columns of all five specimens. Three of these five specimens which had one stirrup in the joint, were tested to evaluate the effect of the stirrup on the behavior of the beam-column joint together with SFRC. In production of the specimens with SFRC, all special requirements of the Turkish Earthquake Code related to the spacing of hoops were disregarded. Previous researches reported in the literature indicate that the fiber type, the volume content, and the aspect ratio of steel fibers affect the behavior of beam-column joints produced with SFRC. The results of the present investigation show that the behavior of exterior beam-column joints depends on the extent of the region where SFRC is used and the usage of stirrup in the joint, in addition to the parameters listed in the literature.

Compressive behavior of concrete confined with iron-based shape memory alloy strips

  • Saebyeok, Jeong;Kun-Ho E., Kim;Youngchan, Lee;Dahye, Yoo;Kinam, Hong;Donghyuk, Jung
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.431-444
    • /
    • 2022
  • The unique thermomechanical properties of shape memory alloys (SMAs) make it a versatile material for strengthening and repairing structures. In particular, several research studies have already demonstrated the effectiveness of using the heat activated shape memory effect of nickel-titanium (Ni-Ti) based SMAs to actively confine concrete members. Despite the proven effectiveness and wide commercial availability of Ni-Ti SMAs, however, their high cost remains a major obstacle for applications in real structural engineering projects. In this study, the shape memory effect of a new, much more economical iron-based SMA (Fe-SMA) is characterized and the compressive behavior of concrete confined with Fe-SMA strips is investigated. Tests showed the Fe-SMA strips used in this study are capable of developing high levels of recovery stress and can be easily formed into hoops to provide effective active and passive confining pressure to concrete members. Compared to concrete cylinders confined with conventional carbon fiber-reinforced polymer (CFRP) composites, Fe-SMA confinement yielded significantly higher compressive deformation capacity and residual strength. Overall, the compressive behavior of Fe-SMA confined concrete was comparable to that of Ni-Ti SMA confined concrete. This study clearly shows the potential for Fe-SMA as a robust and cost-effective strengthening solution for concrete structures and opens possibilities for more practical applications.

Numerical modelling of circular reinforced concrete columns confined with GFRP spirals using fracture-plastic model

  • Muhammad Saad Ifrahim;Abdul Jabbar Sangi;Shuaib H. Ahmad
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.527-536
    • /
    • 2023
  • Fiber Reinforced Polymer (FRP) bar has emerged as a viable and sustainable replacement to steel in reinforced concrete (RC) under severe corrosive environment. The behavior of concrete columns reinforced with FRP bars, spirals, and hoops is an ongoing area of research. In this study, 3D nonlinear numerical modelling of circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) bars and transversely confined with GFRP spirals were conducted using fracture-plastic model. The numerical models and experimental results are found to be in good agreement. The effectiveness of confinement was accessed through von-mises stresses, and it was found that the stresses in the concrete's core are higher with a 30 mm pitch (46 MPa) compared to a 60 mm pitch (36 MPa). The validated models are used to conduct parametric studies. In terms of axial load carrying capacity and member ductility, the effect of concrete strength, spiral pitch, and longitudinal reinforcement ratio are thoroughly investigated. The confinement effect and member ductility of a GFRP RC column increases as the spiral pitch decreases. It is also found that the confinement effect and member ductility decreased with increase in strength of concrete.

Seismic Resistance of Cast-In-Place Concrete-Filled Hollow PC Columns (현장타설 콘크리트 채움 중공 PC기둥의 내진성능)

  • Lim, Woo-Young;Park, Hong-Gun;Oh, Jung-Keun;Kim, Chang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.35-46
    • /
    • 2014
  • Two types of cast-in-place concrete-filled hollow PC (HPC1, HPC2) columns were developed to reduce lifting load of heavy-weight PC columns and to improve the structural integrity of joints. To form the hollow PC columns, a couple of prefabricated PC panels was used for HPC1, and special hoops were used for HPC2. Lateral pressure of wet concrete on PC faces was measured while placing the concrete inside the columns. To evaluate the seismic resistance, full scale specimens of two HPC columns and a conventional RC column were tested under combined axial compression and lateral cyclic loading. The test results showed that the structural performance of the proposed HPC columns such as intial stiffness, maximum strength, and displacement ductility was comparable to that of the conventional RC column, but the energy dissipation of HPC2 slightly decreased after rebar-buckling. However, all the test specimens satisfied the energy dissipation requirement specified in ACI 374.