Browse > Article
http://dx.doi.org/10.12989/eas.2022.23.5.431

Compressive behavior of concrete confined with iron-based shape memory alloy strips  

Saebyeok, Jeong (Department of Architectural Engineering, Pusan National University)
Kun-Ho E., Kim (Department of Civil and Environmental Engineering, University of Waterloo)
Youngchan, Lee (Department of Architectural Engineering, Pusan National University)
Dahye, Yoo (Department of Architectural Engineering, Pusan National University)
Kinam, Hong (Department of Civil Engineering, Chungbuk National University)
Donghyuk, Jung (School of Civil, Environmental and Architectural Engineering, Korea University)
Publication Information
Earthquakes and Structures / v.23, no.5, 2022 , pp. 431-444 More about this Journal
Abstract
The unique thermomechanical properties of shape memory alloys (SMAs) make it a versatile material for strengthening and repairing structures. In particular, several research studies have already demonstrated the effectiveness of using the heat activated shape memory effect of nickel-titanium (Ni-Ti) based SMAs to actively confine concrete members. Despite the proven effectiveness and wide commercial availability of Ni-Ti SMAs, however, their high cost remains a major obstacle for applications in real structural engineering projects. In this study, the shape memory effect of a new, much more economical iron-based SMA (Fe-SMA) is characterized and the compressive behavior of concrete confined with Fe-SMA strips is investigated. Tests showed the Fe-SMA strips used in this study are capable of developing high levels of recovery stress and can be easily formed into hoops to provide effective active and passive confining pressure to concrete members. Compared to concrete cylinders confined with conventional carbon fiber-reinforced polymer (CFRP) composites, Fe-SMA confinement yielded significantly higher compressive deformation capacity and residual strength. Overall, the compressive behavior of Fe-SMA confined concrete was comparable to that of Ni-Ti SMA confined concrete. This study clearly shows the potential for Fe-SMA as a robust and cost-effective strengthening solution for concrete structures and opens possibilities for more practical applications.
Keywords
active concrete confinement; compressive behavior; prestressing; shape memory alloy;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Cladera, A., Weber, B., Leinenbach, C., Czaderski, C., Shahverdi, M. and Motavalli, M. (2014), "Iron-based shape memory alloys for civil engineering structures: An overview", Constr. Build. Mater., 63, 281-293. https://doi.org/10.1016/j.conbuildmat.2014.04.032.    DOI
2 Czaderski, C., Shahverdi, M., Bronnimann, R., Leinenbach, C. and Motavalli, M. (2014), "Feasibility of iron-based shape memory alloy strips for prestressed strengthening of concrete structures", Constr. Build. Mater., 56, 94-105. https://doi.org/10.1016/j.conbuildmat.2014.01.069.    DOI
3 Dang, H.V., Shin, M., Han, S.W. and Lee, K. (2014), "Experimental and analytical assessment of SRF and aramid composites in retrofitting RC columns", Earthq. Struct., 7(5), 797-815. https://doi.org/10.12989/eas.2014.7.5.797.    DOI
4 Fakharifar, M., Chen, G., Wu, C., Shamsabadi, A., ElGawady, M. A. and Dalvand, A. (2016), "Rapid repair of earthquake-damaged RC columns with prestressed steel jackets", J. Bridge Eng., 21(4), 04015075. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000840.    DOI
5 Ho, J.C.M. and Luo, L. (2012), "Uni-axial behaviour of normal-strength concrete-filled-steel-tube columns with external confinement", Earthq. Struct., 3(6), 889-910. https://doi.org/10.12989/eas.2012.3.6.889.    DOI
6 Holmes, N., Niall, D. and O'shea, C. (2015), "Active confinement of weakened concrete columns", Mater. Struct., 48(9), 2759-2777. https://doi.org/10.1617/s11527-014-0352-1.    DOI
7 Hong, K., Lee, S., Han, S. and Yeon, Y. (2018a), "Evaluation of Fe-based shape memory alloy (Fe-SMA) as strengthening material for reinforced concrete structures", Appl. Sci., 8(5), 730. https://doi.org/10.3390/app8050730.    DOI
8 Hong, K., Lee, S., Yeon, Y. and Jung, K. (2018b), "Flexural response of reinforced concrete beams strengthened with near-surface-mounted Fe-based shape-memory alloy strips", Int. J. Concr. Struct. Mater., 12(1), 1-13. https://doi.org/10.1186/s40069-018-0279-y.    DOI
9 Hong, K.N., Yeon, Y.M., Shim, W.B. and Kim, D.H. (2020), "Recovery behavior of Fe-based shape memory alloys under different restraints", Appl. Sci., 10(10), 3441. https://doi.org/10.3390/app10103441.    DOI
10 Ji, S.W., Yeon, Y.M. and Hong, K.N. (2020), "Compression behavior of concrete laterally confined by Fe-based shape memory alloy spiral reinforcement [in Korean]", J. Korean Soc. Adv. Compos. Struct., 11(6), 63-70. https://doi.org/10.11004/kosacs.2020.11.6.063.    DOI
11 Lam, L. and Teng, J.G. (2003), "Design-oriented stress-strain model for FRP-confined concrete", Constr. Build. Mater., 17(6-7), 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X.    DOI
12 Rousakis, T.C. and Tourtouras, I.S. (2014), "RC columns of square section-passive and active confinement with composite ropes", Compos. Part B. Eng., 58, 573-581. https://doi.org/10.1016/j.compositesb.2013.11.011.    DOI
13 Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).    DOI
14 Motavalli, M., Czaderski, C. and Pfyl-Lang, K. (2011), "Prestressed CFRP for strengthening of reinforced concrete structures: Recent developments at Empa, Switzerland", J. Compos. Constr., 15(2), 194-205. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000125.    DOI
15 Rojob, H. and El-Hacha, R. (2017), "Self-prestressing using iron-based shape memory alloy for flexural strengthening of reinforced concrete beams", ACI Struct. J., 114(2), 523. https://doi.org/10.14359/51689455.    DOI
16 Shahverdi, M., Czaderski, C. and Motavalli, M. (2016), "Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams", Constr. Build. Mater., 112, 28-38. https://doi.org/10.1016/j.conbuildmat.2016.02.174.    DOI
17 Shin, M. and Andrawes, B. (2010), "Experimental investigation of actively confined concrete using shape memory alloys", Eng. Struct., 32(3), 656-664. https://doi.org/10.1016/j.engstruct.2009.11.012.    DOI
18 Shin, M. (2012), "Seismic retrofit and repair of reinforced concrete bridge columns using shape memory alloy spirals", Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Champaign. 
19 Tsai, W. (1988), "Uniaxial compressional stress-strain relation of concrete", J. Struct. Eng., 114(9), 2133-2136. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:9(2133).    DOI
20 Wayman, C.M. and Duerig, T.W. (1990), "An introduction to martensite and shape memory", Eng. Asp. Shape Mem. Alloys, 3-20. https://doi.org/10.1016/B978-0-7506-1009-4.50005-6.    DOI
21 Zerbe, L., Reda, M., Dawood, M., Belarbi, A., Senouci, A., Gencturk, B. and Michel, J. (2017), "Behavior of retrofitted concrete members using iron-based shape memory alloys", Proceedings of the 4th Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Zurich, Switzerland, September. 
22 Chang, C., Kim, S.J., Park, D. and Choi, S. (2014), "Experimental investigation of reinforced concrete columns retrofitted with polyester sheet", Earthq. Struct., 6(3), 237-250. https://doi.org/10.12989/eas.2014.6.3.237.    DOI
23 Chen, Q. (2015), "Experimental testing and constitutive modeling of concrete confined with shape memory alloys", Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Champaign. 
24 Chen, Q. and Andrawes, B. (2017), "Cyclic stress-strain behavior of concrete confined with NiTiNb-shape memory alloy spirals", J. Struct. Eng., 143(5), 04017008. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001728.    DOI
25 Choi, E., Chung, Y.S., Choi, J.H., Kim, H.T. and Lee, H. (2010), "The confining effectiveness of NiTiNb and NiTi SMA wire jackets for concrete", Smart Mater. Struct., 19(3), 035024. https://doi.org/10.1088/0964-1726/19/3/035024.    DOI