• Title/Summary/Keyword: HMDS

Search Result 106, Processing Time 0.024 seconds

Study on the Synthesis of Hydrophobic Silica and Its Application for Gas Barrier Film (소수성 실리카의 제조 및 가스차단성 필름으로의 응용에 관한 연구)

  • Yang, Kyeong Min;Chang, Mi Jung;Nam, Kwang Hyun;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.554-558
    • /
    • 2017
  • In order to achieve a hydrophobic surface of silica, we reacted silica nanoparticles with hexamethyldisilazane (HMDS) under various reaction conditions. Modification of the surface of silica with organic materials was confirmed by the thermogravity and elemental analysis. The modified silica displayed nearly the same morphology as to the pristine silica. The reaction of 20 g of HMDS with 1 g of silica in decalin at $200^{\circ}C$ for 6 hours was found to be the optimum reaction condition in terms of the dispersity in toluene and the surface roughness of composite films. Oxygen permeation studies of the composite film demonstrated that the modified silica enhanced a gas barrier performance.

Enhancement in the Amine Resistance of Membranes for Membrane Contactors by Plasma Treatment (플라즈마를 이용한 막접촉기용 막의 아민 용액에 대한 저항성 향상)

  • Choi, Seung-Hak;Oh, Sae-Joong;Cho, Nam-Joon;Koo, Ja-Kyung
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.719-724
    • /
    • 2002
  • Celgard and Durapore membranes were plasma-treated to enhance the hydrophobicity and durability to amine solution. The plasma gases or vapors used were $CF_4$, Hexafluorobenzene(HFP), Pentafluoropyridine(PFP) and Hexamethyldisiloxane(HMDS). The surface structure of plasma treated membranes was analyzed by FT-IR spectra. The contact angles of plasma treated Celgard and Durapore were dependent of the plasma gases used. $CF_4$ and HMDS plasma increased the contact angles of Celgard and Durapore, while HFB and PFP plasma decreased the contact angles. Durability to monoethanolamine(MEA) solution was enhanced for $CF_4$ plasma-treated Durapore, while the durability was not good for plasma-treated Celgard.

Fabrication of polycrystalline 3C-SiC diode for harsh environment micro chemical sensors and their characteristics (극한 환경 마이크로 화학센서용 다결정 3C-SiC 다이오드 제작과 그 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.195-196
    • /
    • 2009
  • This paper describes the fabrication and characteristics of polycrystalline 3C-SiC thin film diodes for extreme environment applications, in which the this thin film was deposited onto oxidized Si wafers by APCVD using HMDS In this work, the optimized growth temperature and HMDS flow rate were $1,100^{\circ}C$ and 8sccm, respectively. A Schottky diode with a Au, Al/poly 3C-SiC/$SiO_2$/Si(n-type) structure was fabricated and its threshold voltage ($V_d$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_D$) values were measured as 0.84V, over 140V, 61nm, and $2.7{\times}10^{19}cm^2$, respectively. To produce good ohmic contact, Al/3C-SiC were annealed at 300, 400, and $500^{\circ}C$ for 30min under a vacuum of $5.0{\times}10^{-6}$Torr. The obtained p-n junction diode fabricated by poly 3C-SiC had similar characteristics to a single 3C-SiC p-n junction diode.

  • PDF

Growth of polycrystalline 3C-SiC thin films for M/NEMS applications by CVD (CVD에 의한 M/NEMS용 다결정 3C-SiC 박막 성장)

  • Chung, Gwiy-Sang;Kim, Kang-San;Jeong, Jun-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.85-90
    • /
    • 2007
  • This paper presents the growth conditions and characteristics of polycrystalline 3C-SiC (silicon carbide) thin films for M/NEMS applications related to harsh environments. The growth of the 3C-SiC thin film on the oxided Si wafers was carried out by APCVD using HMDS (hexamethyildisilane: $Si_{2}(CH_{3})_{6})$ precursor. Each samples were analyzed by XRD (X-ray diffraction), FT-IR (fourier transformation infrared spectroscopy), RHEED (reflection high energy electron diffraction), GDS (glow discharge spectrometer), XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscope) and TEM (tunneling electro microscope). Moreover, the electrical properties of the grown 3C-SiC thin film were evaluated by Hall effect. From these results, the grown 3C-SiC thin film is very good crystalline quality, surface like mirror and low defect. Therefore, the 3C-SiC thin film is suitable for extreme environment, Bio and RF M/NEMS applications in conjunction with Si fabrication technology.

A study on the SiC selective deposition (SiC의 선택적 증착에 관한 연구)

  • 양원재;김성진;정용선;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.233-239
    • /
    • 1998
  • SiC thin films were deposited by chemical vapor deposition method using tetramethylsilane (TMS) and hexamethyldisilane (HMDS). The chamber pressure during the deposition was kept at about 1 torr. Precursor was transported to the reaction chamber by $H_2$gas and SiC deposition was carried out at the reaction temperature of $1200^{\circ}C$. Si-wafer masked with tantalum and MgO single crystal covered with platinum and molybdenum were used as substrates. The selectivity of SiC deposition was observed by comparing the microstructure between metal (Ta, Pt, and Mo) surfaces and substrate surfaces (Si and MgO). The deposited films were identified as the $\beta-SiC$ phase by X-ray diffraction pattern. Also, the deposition -behavior of SiC on each surface was investigated by the scanning electron microscope analysis.

  • PDF

Electrical characteristics of In-situ doped polycrystalline 3C-SiC thin films (In-situ 도핑된 다결정 3C-SiC 박막의 전기적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.137-137
    • /
    • 2008
  • In-situ doped polycrystalline 3C-SiC thin films were deposited by APCVD at $1200^{\circ}C$ using HMDS(hexamethyildisilane: $Si_2(CH_3)_6)$) as Si and C precursor, and 0 ~ 100 sccm $N_2$ as the dopant source gas. The peak of SiC is appeared in polycrystalline 3C-SiC thin films grown on $SiO_2$/Si substrates in XRD(X-ray diffraction) and FT-IR(Fourier transform infrared spectroscopy) analyses. The resistivity of polycrystalline 3C-SiC thin films decreased from 8.35 $\Omega{\cdot}cm$ with $N_2$ of 0 sccm to 0.014 $\Omega{\cdot}cm$ with 100 sccm. The carrier concentration of poly 3C-SiC films increased with doping from $3.0819\times10^{17}$ to $2.2994\times10^{19}cm^{-3}$ and their electronic mobilities increased from 2.433 to 29.299 $cm^2/V{\cdot}S$, respectively.

  • PDF

The Carrier Gas Effects on Selectivity and the Enhancement of Selectivity by Surface Passivation in Chemical Vapor Deposition of Copper Films (구리 박막의 선택적 화학기상 증착에 대한 운반 기체의 영향과 기판 표면 처리에 의한 선택성 증진 효과)

  • Kim, Seok;Park, Jong-Man;Choi, Doo-Jin
    • Korean Journal of Materials Research
    • /
    • v.7 no.9
    • /
    • pp.811-823
    • /
    • 1997
  • 차세대 반도체 배선분야에서, Cu박막은 현재의 AI을 대체할 물질로서 대두되고 있으며 CVD에 의한 선택적 증착은 Cu의 patterning과 관련하여 상당한 관심을 일으키고 있다. 본 연구에서는 (hfac)Cu(VTMS)의 유기원료를 사용하여, CVD공정변수, 운반기체, 표면 처리 공정에 따른 SiO$_{2}$, TiN, AI기판에 대한 선택성을조사하였다. 선택성은 저온(15$0^{\circ}C$), 저합(0.3Torr)에서 향상될 수 있었으며, 특히, HMDS in-situ-predosing공정에 의해 더욱 향상될 수 있었다. 모든 경우에 대해, H$_{2}$운반기체가 Ar 보다 짧은 incubation time과 높은 증착 속도가 얻어졌으며, Cu입자들의 크기가 작고 연결상태가 보다 양호하였다. 이는 H$_{2}$경우에 기판표면에 원료가 흡착되어 핵을 형성시키는 위치 (-OH)가 보다 많이 제공되기 때문으로 여겨진다. 이러한 미세구조의 차이는 H$_{2}$경우에 보다 낮은 비저항을 얻게 했다. HMDS in-situ predosing공정에 의한 Cu박막내 불순물 차이는 없었으며 뚜렷한 비저항의 차이도 나타나지 않았다.

  • PDF

The Synthesis of Hydrophobic Silica Aerogel in the Macroporous Ceramic Structure by Ambient Drying Process (상압 건조 공정을 이용한 다공성 세라믹스 구조체 내부에 소수성 실리카 에어로겔의 합성)

  • Hong, Sun-Wook;Song, In-Hyuck;Park, Young-Jo;Yun, Hui-Suk;Hahn, Yoo-Dong;Hwang, Ki-Young;Rhee, Young-Woo
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.269-276
    • /
    • 2011
  • The synthesis behavior of nanoporous silica aerogel in the macroporous ceramic structure was observed using TEOS as a source material and glycerol as a dry control chemical additive (DCCA). Silica aerogel in the macroporous ceramic structure was synthesized via sono-gel process using hexamethyldiazane (HMDS) as a modification agent and n-hexane as a main solvent. The wet gel with a modified surface was dried at $105^{\circ}C$ under ambient pressure. The addition of glycerol appears to give the wet gel a more homogeneous microstructure. However, glycerol also retarded the rate of surface modification and solvent exchange. Silica aerogel completely filled the macroporous ceramic structure without defect in the condition of surface modification (20% HMDS/nhexane at 36hr).

Growth of Single Crystalline 3C-SiC Thin Films for High Power Devices by CVD (CVD에 의한 고전력 디바이스용 단결정 3C-SiC 박막 성장)

  • Chung, Gwiy-Sang;Shim, Jae-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.98-102
    • /
    • 2010
  • This paper describes that single crystalline 3C-SiC (cubic silicon carbide) thin films have been deposited on carbonized Si(100) substrates using hexamethyldisilane (HMDS, $Si_2(CH_3){_6}$) as a safe organosilane single precursor and a nonflammable mixture of Ar and $H_2$ gas as the carrier gas by APCVD at $1280^{\circ}C$. The deposition was performed under various conditions to determine the optimized growth condition. The crystallinity of the 3C-SiC thin film was analyzed by XRD (X-ray diffraction). The surface morphology was also observed by AFM (atomic force microscopy) and voids between SiC and Si interfaces were measured by SEM (scanning electron microscopy). Finally, residual strain and hall mobility was investigated by surface profiler and hall measurement, respectively. From these results, the single crystalline 3C-SiC film had a good crystal quality without defects due to viods, a low residual stress, a very low roughness.