Browse > Article
http://dx.doi.org/10.14478/ace.2017.1072

Study on the Synthesis of Hydrophobic Silica and Its Application for Gas Barrier Film  

Yang, Kyeong Min (Department of Polymer Engineering, College of Engineering, Suwon University)
Chang, Mi Jung (Mazal Co., Ltd)
Nam, Kwang Hyun (Mazal Co., Ltd)
Chung, Dae-won (Department of Polymer Engineering, College of Engineering, Suwon University)
Publication Information
Applied Chemistry for Engineering / v.28, no.5, 2017 , pp. 554-558 More about this Journal
Abstract
In order to achieve a hydrophobic surface of silica, we reacted silica nanoparticles with hexamethyldisilazane (HMDS) under various reaction conditions. Modification of the surface of silica with organic materials was confirmed by the thermogravity and elemental analysis. The modified silica displayed nearly the same morphology as to the pristine silica. The reaction of 20 g of HMDS with 1 g of silica in decalin at $200^{\circ}C$ for 6 hours was found to be the optimum reaction condition in terms of the dispersity in toluene and the surface roughness of composite films. Oxygen permeation studies of the composite film demonstrated that the modified silica enhanced a gas barrier performance.
Keywords
silica; hexamethyldisilazane; hydrophobicity; gas barrier; phenoxy resin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. V. Duncan, Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors, J. Colloid Interface Sci., 363, 1-24 (2011).   DOI
2 J. Schneider, M. I. Akbar, J. Dutroncy, D. Kiesler, M. Leins, A. Schulz, M. Walker, U. Schumacher, and U. Stroth, Silicon oxide barrier coatings deposited on polymer materials for applications in food packaging industry, Plasma Process. Polym., 6, 700-704 (2009).   DOI
3 M. Moritoki, T. Mori, A. Shirakura, and T. Suzuki, Gas barrier property of silica-based films on PET synthesized by atmospheric pressure plasma enhanced CVD, Surf. Coat. Technol., 307, 1070-1073 (2016).   DOI
4 H. Chatham, Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates, Surf. Coat. Technol., 78, 1-9 (1996).   DOI
5 B. Singh, J. Bouchet, G. Rochat, Y. Leterrier, J. A. E. Manson, and P. Fayet, Ultra-thin hybrid organic/inorganic gas barrier coatings on polymers, Surf. Coat. Technol., 201, 7107-7114 (2007).   DOI
6 B. Singh, J. Bouchet, Y. Leterrier, J. A. E. Manson, G. Rochat, and P. Fayet, Durability of aminosilane-silica hybrid gas-barrier coatings on polymers, Surf. Coat. Technol., 202, 208-216 (2007).   DOI
7 J. Lange and Y. Wyser, Recent innovations in barrier technologies for plastic packaging, Packag. Technol. Sci., 16, 149-158 (2003).   DOI
8 J. S. Lewis and M. S. Weaver, Thin-film permeation-barrier technology for flexible organic light-emitting devices, IEEE J. Sel. Top. Quantum Electron., 10, 45-57 (2004).   DOI
9 V. Vladimirov, C. Betchev, A. Vassiliou, G. Papageorgiou, and D. Bikiaris, Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties, Compos. Sci. Technol., 66, 2935-2944 (2006).   DOI
10 D. N. Bikiaris, A. Vassiliou, E. Pavlidou, and G. P. Karayannidis, Compatibilisation effect of PP-g-MA copolymer on iPP/$SiO_2$ nanocomposites prepared by melt mixing, Eur. Polym. J., 41, 1965-1978 (2005).   DOI
11 T. W. Yoo, J. S. Woo, J. H. Ji, B. M. Lee, and S. S. Kim, Preparation and characterization of epoxy nanocomposites with organosilanized fumed silica, Biomater. Res., 16, 32-39 (2012).
12 V. M. Gun'ko, M. S. Vedamuthu, G. L. Henderson, and J. P. Blitz, Mechanism and kinetics of hexamethyldisilazane reaction with a fumed silica surface, J. Colloid Interface Sci., 228, 157-170 (2000).   DOI
13 S. V. Slavov, A. R. Sanger, and K. T. Chuang, Mechanism of silation of silica with hexamethyldisilazane, J. Phys. Chem., 104, 983-989 (2000).   DOI
14 N. Alipour, U. W. Gedde, M. S. Hedenqvist, S. Yu, S. Roth, K. Bruning, A. Vieyres, and K. Schneider, Structure and properties of polyethylene-based and EVOH-based multilayered films with layer thicknesses of 150 nm and greater, Eur. Polym. J., 64, 36-51 (2015).   DOI
15 S. H. Park, S. J. Kim, H. S. Lee, J. H. Choi, C. M. Jeong, M. H. Sung, D. H. Kim, and H. J. Park, Improvement of oxygen barrier of oriented polypropylene films coated by gravure ink-containing nanoclays, J. Appl. Polym. Sci., 121, 1788-1795 (2011).   DOI
16 P. S. Kumbhar, V. M. Yadav, G. D. Yadav, Chemically modified oxide surfaces. In: D. E. Leyden and W. T. Collins (eds.). Gordon and Breach, 3rd Ed., p. 81-89, Philadelphia, USA (1989).
17 J. Joo, H. S. Kim, J. T. Kim, H. J. Yoo, J. R. Lee, and I. W. Cheong, Synthesis and characterization of epoxy silane-modified silica/polyurethane-urea nanocomposite films, Korean Chem. Eng. Res., 50, 371-378 (2012).   DOI
18 T. Eliades, C. Gioka, G. Eliades, and M. Makou, Enamel surface roughness following debonding using two resin grinding methods, Eur. J. Orthod., 26, 333-338 (2004).   DOI
19 J. Verran and C. J. Maryan, Retention of Candida albicans on acrylic resin and silicone of different surface topography, J. Prosthet. Dent., 77, 535-539 (1997).   DOI