• 제목/요약/키워드: HMDS

검색결과 106건 처리시간 0.028초

저유전물질로의 응용을 휘한 규칙성 메조포러스 실리카 박막에의 HMDS 처리 (HMDS Treatment of Ordered Mesoporous Silica Film for Low Dielectric Application)

  • 하태정;최선규;유병곤;박영호
    • 한국세라믹학회지
    • /
    • 제45권1호
    • /
    • pp.48-53
    • /
    • 2008
  • In order to reduce signal delay in ULSI, an intermetal material of low dielectric constant is required. Ordered mesoporous silica film is proper to intermetal dielectric due to its low dielectric constant and superior mechanical properties. The ordered mesoporous silica film prepared by TEOS (tetraethoxysilane) / MTES (methyltriethoxysilane) mixed silica precursor and Brij-76 surfactant was surface-modified by HMDS (hexamethyldisilazane) treatment to reduce its dielectric constant. HMDS can substitute $-Si(CH_3)_3$ groups for -OH groups on the surface of silica wall. In order to modify interior silica wall, HMDS was treated by two different processes except the conventional spin coating. One process is that film is dipped and stirred in HMDS/n-hexane solution, and the other process is that film is exposed to evaporated HMDS. Through the investigation with different HMDS treatment, it was concluded that surface modification in evaporated HMDS was more effective to modify interior silica wall of nano-sized pores.

Electrical and Mechanical Properties of Ordered Mesoporous Silica Film with HMDS Treatment

  • Ha, Tae-Jung;Choi, Sun-Gyu;Reddy, A. Sivasankar;Yu, Byoung-Gon;Park, Hyung-Ho
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.159-159
    • /
    • 2007
  • In order to reduce a signal delay in ULSI, low resistive metal and intermetal dielectric material of low dielectric constant are required. Ordered mesoporous silica film is proper to intermetal dielectric due to its low dielectric constant and superior mechanical properties. In this study, ordered mesoporous silica films was synthesized using TEOS (tetraethoxysilane) / MTES (methyltriethoxysilane) mixed silica precursor and Brij-$76^{(R)}$ surfactant. These films had the porosity of 40% and dielectric constant of 2.5. To lower dielectric constant, the ordered mesoporous silica films were surface-modified by HMDS (hexamethyldisilazane) treatment. HMDS substituted -OH groups on the surface of silica wall for -Si$(CH_3)_3$ groups. After the HMDS treatment, ordered mesoporous silica films were calcined at various calcination temperatures. Through the investigation, it was concluded that the proper calcination temperature is necessary as aspects of structural, electrical, and mechanical properties.

  • PDF

Influence of HMDS additive on the properties of YAG:Ce nanophosphor

  • 최규만;김여환;임해진;윤상옥
    • 한국정보전자통신기술학회논문지
    • /
    • 제4권1호
    • /
    • pp.61-67
    • /
    • 2011
  • YAG:Ce 형광제 제조에 있어서 공침(co-precipitation) 후 n-butanol 공비증류(azeotropic distillation)시 HMDS(hexadimethyldisilazane)를 첨가하였을 때, 형광체가 광학특성에 미치는 영향에 관하여 연구하였다. 물과 유기용제에 의한 공비증류 시 유기용제의 분자량이 크면 표면의 수소결합이 유기용제로 치환됨으로서 표면장력을 감소시켜 분체의 원형화(conglobation)와 응집(agglomerate)을 감소시키므로 유기용제로 n-butanol보다 분자량이 큰 HMDS을 첨가하였다. N-butanol 만을 사용한 형광체가 HMDS를 첨가한 것 보다 응집(agglomerate)되는 현상이 감소하였으며 우수한 광학적 특성을 나타내었다.

HMDS 가스원을 이용한 3C-SiC의 결정성장 (Crystal Growth of 3C-SiC Using HMDS Gas Source)

  • 선주헌;정연식;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.735-738
    • /
    • 2002
  • Single crystal 3C-SiC(cubic silicon carbide) thin-films were deposited on Si(100) substrate up to a thickness of $4.3{\mu}m$ by APCVD method using HMDS(hexamethyildisilane) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC films was $4.3{\mu}m/hr$. The 3C-SiC epitaxical films grown on Si(100) were characterized by XRD, AFM, RHEED, XPS and raman scattering, respectively. The 3C-SiC distinct phonons of TO(transverse optical) near $796cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The heteroepitaxially grown films were identified as the single crystal 3C-SiC phase by XRD spectra$(2{\theta}=41.5^{\circ})$.

  • PDF

Ti glue layer, Boron dopant, N2plasma 처리들이 Cu와 low-k 접착력에 미치는 효과 (Adhesion Property of Cu on Low-k : Ti Glue Layer, Boron Dopant, N2plasma effects)

  • 이섭;이재갑
    • 한국재료학회지
    • /
    • 제13권5호
    • /
    • pp.338-342
    • /
    • 2003
  • Adhesion between Cu and low-k films has been investigated. Low-k films deposited using a mixture of hexamethyldisilane(HMDS) and Para-xylene had a dielectric constant as low as 2.7, showing the thermally stable properties up to $400^{\circ}C$. In this study, Ti glue layer, boron dopant, and $N_2$plasma treatment were used to improve adhesion property of between Cu and low-k films. Ti glue layer slightly improved adhesion property. After $N_2$plasma treatment, the adhesion property was significantly improved due to the increased roughness and the formation of new binding states between Ti and plasma-treated PPpX : HMDS. However, $300^{\circ}C$ annealing of $N_2$plasma treated sample caused the diffusion of Cu into the PPpX : HMDS, degrading the low-k properties. In the case of Cu(B)/Ti/PPpX : HMDS, the adhesion was remarkably increased. This enhanced adhesion was attributed to formation of Ti-boride at the Cu-Ti interface. It is because the formed Ti-boride prevented the diffusion of Cu into the PPpX : HMDS and the Cu-Ti reaction at the Ti interface.

Hexamethyldisiloxane 플라즈마 중합막을 통한 영구기체 및 응축성 증기의 투과특성에 관한 연구 (A Study on the Permeation Properties of Permanent Gases and condensable Vapors through Hexamethyldisiloxane Plasma-Polymerized Membranes)

  • 오세중
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.699-706
    • /
    • 2018
  • 플라즈마 고분자의 영구기체(He, $H_2$, $O_2$, $N_2$, $CH_4$) 및 응축성 증기($CO_2$, $C_2H_4$, $C_3H_8$)에 대한 투과 특성을 조사하였다. 플라즈마 고분자는 마이크로파 방전과 라디오파 방전을 이용하여 제조하였으며 플라즈마 중합의 단량체(monomer)로는 hexamethyldisiloxane(HMDS)을 사용하였다. 마이크로파를 이용하여 제조한 HMDS 플라즈마 고분자막의 투과도계수는 투과 기체의 분자지름에 의존하는 경향을 나타내었으며 라디오파를 이용하여 제조한 플라즈마 고분자막보다 높은 산소/질소 투과선택도를 나타내었다. 반면에 라디오파를 이용하여 제조한 HMDS 플라즈마 고분자막의 투과도계수는 투과기체의 임계온도에 의존하는 경향을 나타내었으며 질소에 대한 에틸렌 및 프로판의 투과선택도가 우수한 특성을 나타내었다. 마이크로파로 중합시킨 고분자막은 가교결합도가 높기 때문에 기체의 투과도계수가 주로 확산계수(또는 분자지름)에 의존하게 된다. 그러나 라디오파의 에너지 밀도는 마이크로파의 에너지 밀도보다 낮기 때문에 라디오파로 중합시킨 플라즈마 고분자막의 구조는 마이크로파로 중합시킨 고분자 막에 비하여 가교결합도가 떨어지게 되며 이 막을 통한 투과도계수는 분자크기 보다는 기체의 임계온도에 의존하는 경향을 나타내었다. 따라서 라디오파를 이용하여 중합시킨 HMDS 플라즈마 고분자막은 영구기체 보다는 공기 중의 유기물질을 제거하는데 보다 효과적으로 이용될 수 있을 것으로 생각된다.

Si(100) 기판 위에 성장돈 3C-SiC 박막의 물리적 특성 (Physical Characteristics of 3C-SiC Thin-films Grown on Si(100) Wafer)

  • 정귀상;정연식
    • 한국전기전자재료학회논문지
    • /
    • 제15권11호
    • /
    • pp.953-957
    • /
    • 2002
  • Single crystal 3C-SiC (cubic silicon carbide) thin-films were deposited on Si(100) wafer up to the thickness of 4.3 ${\mu}{\textrm}{m}$ by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane; {CH$_{3}$$_{6}$ Si$_{2}$) at 135$0^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC film was 4.3 ${\mu}{\textrm}{m}$/hr. The 3C-SiC epitaxial film grown on Si(100) wafer was characterized by XRD (X-ray diffraction), AFM (atomic force microscopy), RHEED (reflection high energy electron diffraction), XPS (X-ray photoelecron spectroscopy), and Raman scattering, respectively. Two distinct phonon modes of TO (transverse optical) near 796 $cm^{-1}$ / and LO (longitudinal optical) near 974$\pm$1 $cm^{-1}$ / of 3C-SiC were observed by Raman scattering measurement. The heteroepitaxially grown film was identified as the single crystal 3C-SiC phase by XRD spectra (2$\theta$=41.5。).).