• Title/Summary/Keyword: HILS 시스템

Search Result 168, Processing Time 0.026 seconds

A Study on the GEO-Tracking Algorithm of EOTS for the Construction of HILS system (HILS 시스템 구축을 위한 EOTS의 좌표지향 알고리즘 실험에 대한 연구)

  • Gyu-Chan Lee;Jeong-Won Kim;Dong-Gi Kwag
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.663-668
    • /
    • 2023
  • Recently it is very important to collect information such as enemy positions and facilities. To this end, unmanned aerial vehicles such as multicopters have been actively developed, and various mission equipment mounted on unmanned aerial vehicles have also been developed. The coordinate-oriented algorithm refers to an algorithm that calculates a gaze angle so that the mission equipment can fix the gaze at a desired coordinate or position. Flight data and GPS data were collected and simulated using Matlab for coordinate-oriented algorithms. In the simulation using only the coordinate data, the average Pan axis angle was about 0.42°, the Tilt axis was 0.003°~0.43°, and the relatively wide error was about 0.15° on average. As a result of converting this into the distance in the NE direction, the error distance in the N direction was about 2.23m on average, and the error distance in the E direction was about -1.22m on average. The simulation applying the actual flight data showed a result of about 19m@CEP. Therefore, we conducted a study on the self-error of coordinate-oriented algorithms in monitoring and information collection, which is the main task of EOTS, and confirmed that the quantitative target of 500m is satisfied with 30m@CEP, and showed that the desired coordinates can be directed.

Development of Processor Real-Time Monitoring Software for Drone Flight Control Computer Based on NUTTX (NUTTX 기반 드론 비행조종컴퓨터의 통합시험을 위한 프로세서 모니터링 연구)

  • Choi Jinwon
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.62-69
    • /
    • 2022
  • Flight control systems installed on unmanned aircraft require thorough verification from the design stage. This verification is made through the integrated flight control test environment. Typically, a debugger is used to monitor the internal state of a flight control computer in real time. Emulator with a real-time memory monitor and trace is relatively expensive. The JTAG Emulator is unable to operate in real time and has limitations that cannot be caught up with the processing speed of latest high-speed processors. In this paper, we describe the results of the development of internal monitoring software for drone flight control computer processors based on NUTTX/PIXHAWK. The results of this study show that the functions provided compared to commercial debugger are limited, but it can be sufficiently used to verify the flight control system using this system under limited budget.

A Study on Stable Indication for a Sloshing of Fuel-quantity according to Driving State of Vehicle (차량 주행 상태에 따른 연료량 유동의 안정 지침에 대한 연구)

  • Hur, Jin;Park, Jong-Myeong;Lee, Seon-Bong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.37-44
    • /
    • 2012
  • In this paper, the application of robust fuel gauge algorithm in the external environment to general fuel gauge system is proposed. The proposed fuel gauge system is composed of two modules which are Moving Average Filter (MAF) and Inclination Filter (IF). They are used to show correctly the amount of fuel in the external environment which are curve road, slope or acceleration/deceleration driving. In parallel, verification and validation processes using Software In the Loop Simulation (SILS) in personal computer and Hardware In the Loop Simulation (HILS) similar to actual vehicle environments are established. Through this research, it turned out to be possible to operation of gauge become correct of external environment.

Development of the SVPG(Sungkyunkwan Univ. Virtual Proving Ground) : System Configuration and Application of the Virtual Proving Ground (가상주행시험장(SVPG) 개발: 가상주행시험장의 시스템 구성 및 운영)

  • 서명원;구태윤;권성진;신영수;조기용;박대유
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.195-202
    • /
    • 2002
  • By using modeling and simulation. today's design engineers are simultaneously reducing time to market and decreasing the cost of development, while increasing the quality and reliability of their products. A driving simulator is the best example of this method and allows virtual designs of control systems, electronic systems, mechanical systems and hydraulic system of a vehicle to be evaluated before costly prototyping. The objective of this Paper is to develop the virtual Proving: ground using a driving simulator and to show its capabilities of an automotive system development tool. For this purpose, including a real-time vehicle dynamics analysis system, the PC-based driving simulator and the virtual proving ground are developed by using VR(Virtual Reality) techniques. Also ABS HIL(Hardware-In-the-Loop ) simulation is performed successfully.

Development of a Lane Departure Avoidance System using Vision Sensor and Active Steering Control (비전 센서 및 능동 조향 제어를 이용한 차선 이탈 방지 시스템 개발)

  • 허건수;박범찬;홍대건
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.222-228
    • /
    • 2003
  • Lane departure avoidance system is one of the key technologies for the future active-safety passenger cars. The lane departure avoidance system is composed of two subsystems; lane sensing algorithm and active-steering controller. In this paper, the road image is obtained by vision sensor and the lane parameters are estimated using image processing and Kalman Filter technique. The active-steering controller is designed to prevent the lane departure. The developed active-steering controller can be realized by steer-by-wire actuator. The lane-sensing algorithm and active-steering controller are implemented into the steering HILS(Hardware-In-the-Loop Simulation) and their performance is evaluated with a human driver in the loop.

Model Based Design and Validation of Vehicle Safety Power Window Control Systems (자동차 Safety Power Window 제어시스템의 모델기반 설계 및 검증)

  • Lee, Do-Hyun;Kim, Byeong-Woo;Choi, Jin-Kwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2298-2305
    • /
    • 2010
  • The paper presents the Model Based Design(MBD) method which design and verify control algorithm for safety power window. Safety power window are required to work together with the anti-pinch function and have to meet FMVSS118 S5 requirements and equivalent ECC requirements. To meet the requirements, this paper presents the establishment of SILS and RCP environments. The design process can reduce time and support more performance-assured design. As a result of study, it met the regulations and achieved reaction force that close to common products.

Compliance Effect Modeling based on Quasi-static Analysis for Real-time Multibody Vehicle Dynamics (실시간 다물체 차량 해석을 위한 준정적법의 컴플라이언스 효과 모델링)

  • Jeong, Wan-Hee;Ha, Kyoung-Nam;Kim, Sung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1003-1008
    • /
    • 2007
  • Compliance effect consideration method for real-time multibody vehicle dynamics is proposed using quasi-static analysis. The multibody vehicle model without bush elements is used based on the subsystem synthesis method which provides real-time computation on the multibody vehicle model. Reaction forces are computed in the suspension subsystem. According to deformation from the quasi-static analysis using reaction forces and bush stiffness, suspension hardpoint locations and suspension linkage orientation are changed. To validate the proposed method, quarter car simulations of McPherson strut and multilink suspension subsystems. Full car bump run simulations are also carried out comparing with the ADAMS vehicle model with bush elements. CPU times are also measured to see the real-time capabilities of the proposed method.

  • PDF

Development and Performance Verification of Real-time Hybrid Navigation System for Autonomous Underwater Vehicles

  • Kim, Hyun Ki;Jung, Woo Chae;Kim, Jeong Won;Nam, Chang Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.97-107
    • /
    • 2016
  • Military Autonomous Underwater Vehicle (AUV) is utilized to search a mine under the sea. This paper presents design and performance verification of real-time hybrid navigation system for AUV. The navigation system uses Doppler Velocity Log (DVL) integration method to correct INS error in underwater. When the AUV is floated on the water, the accumulated error of navigation algorithm is corrected using position/velocity of GPS. The navigation algorithm is verified using 6 Degree Of Freedom (DOF) simulation, Program In the Loop Simulation (PILS). Finally, the experiments are performed in real sea environment to prove the reliability of real-time hybrid navigation algorithm.

Compliance Effect Modeling Based on Quasi-Static Analysis for Real-Time Multibody Vehicle Dynamics (실시간 다물체 차량 해석을 위한 준정적법의 컴플라이언스 효과 모델링)

  • Kim, Sung-Soo;Jeong, Wan-Hee;Ha, Kyoung-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.162-169
    • /
    • 2008
  • Compliance effect consideration method for real-time multibody vehicle dynamics is proposed using quasi-static analysis. The multibody vehicle model without bush elements is used based on the subsystem synthesis method which provides real-time computation on the multibody vehicle model. Reaction forces are computed in the suspension subsystem. According to deformation from the quasi-static analysis using reaction forces and bush stiffness, suspension hardpoint locations and suspension linkage orientation are changed. To validate the proposed method, quarter car simulations of McPherson strut and multilink suspension subsystems are performed. Full car bump run simulations and fish hook handling test simulations are also carried out comparing with the ADAMS vehicle model with bush elements. CPU times are also measured to see the real-time capabilities of the proposed method.

A Real-Time NDGPS/INS Navigation System Based on Artificial Vision for Helicopter (인공시계기반 헬기용 3차원 항법시스템 구성)

  • Kim, Jae-Hyung;Lyou, Joon;Kwak, Hwy-Kuen
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.30-39
    • /
    • 2008
  • An artificial vision aided NDGPS/INS system has been developed and tested in the dynamic environment of ground and flight vehicles to evaluate the overall system performance. The results show the significant advantages in position accuracy and situation awareness. Accuracy meets the CAT-I precision approach and landing using NDGPS/INS integration. Also we confirm the proposed system is effective enough to improve flight safety by using artificial vision. The system design, software algorithm, and flight test results are presented in details.