• Title/Summary/Keyword: HILS(Hardware-in-the Loop Simulation)

Search Result 194, Processing Time 0.017 seconds

DEVELOPMENT OF THE INDEPENDENT-TYPE STEER-BY-WIRE SYSTEM USING HILS

  • Jo, H.Y.;Lee, U.K.;Kam, M.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.321-327
    • /
    • 2006
  • The previous paper described the logic tuning, the vehicle manufacture and the evaluation in the HILS system for the purpose of the development of a Steer-By-Wire(SBW) system. This paper describes the content of applying to a new HILS system, the vehicle manufacture and the result of the evaluation performed in Independent-type SBW(I-SBW) system. Here, the SBW indicates the method of steering both tires by using one motor as the steering gear actuator, similar to the conventional steering system. On the other hand, the I-SBW means the method of steering both front tires independently by using dual motors as the steering gear actuator. As a result, the layout and the kinematical mechanism of the I-SBW system are quite different from those of the typical steering mechanism. Nevertheless, there is no change in the steering column motor system. In the report, we first describe the structure and control logic of the I-SBW system, and then the control effect on this system as applied for both the HILS system and a vehicle. Furthermore, our HILS system involves the actuator mechanism which realizes the reaction force of the road surface with a minimized frictional force in operation. Therefore, it is possible for us to tune the control logic via the HILS system and confirm the effect of the tuned control logic by applying it to a vehicle with the I-SBW system.

Development of A Lane Departure Monitoring and Control System

  • Huh Kunsoo;Hong Daegun;Stein Jeffrey L.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.1998-2006
    • /
    • 2005
  • The lane departure avoidance systems have been considered promising to assist human drivers in AVCS (Advanced Vehicle Control System). In this paper, a lane departure monitoring and control system is developed and evaluated in the hardware-in-the-loop simulations. This system consists of lane sensing, lane departure monitoring and active steering control subsystems. The road image is obtained based on a vision sensor and the lane parameters are estimated using image processing and Kalman Filter technique. The active steering controller for avoiding the lane departure is designed based on the lane departure metric. The proposed lane departure avoidance system is realized in a steering HILS (hardware-in-the-loop simulation) tool and its performance is evaluated with a driver in the loop.

Development of the Integrated Power Converter for the Environmentally Friendly Vehicle and Validation of the LDC using Battery HILS (친환경 자동차용 통합형 전력변환장치의 개발 및 배터리 HILS를 이용한 LDC 검증에 관한 연구)

  • Kim, Tae-Hoon;Song, Hyun-Sik;Lee, Baek-Haeng;Lee, Chan-Song;Kwon, Cheol-Soon;Jung, Do-Yang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1212-1218
    • /
    • 2014
  • For OBC (On-Board Charger) and LDC (Low DC-DC Converter) used as essential power conversion systems of PHEV (Plug-in Hybrid Electric Vehicle), system performance is required as well as reliability, which is need to protect the vehicle and driver from various faults. While current development processor is sufficient for embodying functions and verifying performance in normal state during development of prototypes for OBC and LDC, there is no clear method of verification for various fault situations that occur in abnormal state and for securing stability of vehicle base, unless verification is performed by mounting on an actual vehicle. In this paper, a CCM (Charger Converter Module) was developed as an integrated structure of OBC and LDC. In addition, diverse fault situations that can occur in vehicles are simulated by a simulator to artificially inject into power conversion system and to test whether it operates properly. Also, HILS (Hardware-in-the-Loop Simulation) is carried out to verify whether LDC is operated properly under power environment of an actual vehicle.

Implementation of Electric Power Assisted Steering System via Hardware-In-Loop-Simulation System

  • Lee, Kil-Soo;Park, Hyung-Gyu;Kim, Myung-Kook;Park, Jung-Hyen;Lee, Man-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.35 no.4
    • /
    • pp.303-316
    • /
    • 2011
  • With the development of mechatronics technology in the transporter industry, the electric power assisted steering (EPAS) system has many advantages compared to the hydraulic system. Many manufacturers are developing and applying EPAS systems to improve the performance of the transporter. Using the HILS system developed in the paper, an adaptable EPAS system was developed for real transporter. It was installed in a real, KIA Rio, and tested. Results indicated outstanding performance. Therefore, the developed EPAS can be applied via HILS system.

HILS Test for the Small Aircraft Autopilot (소형항공기용 Autopilot HILS 시험)

  • Lee, Jang-Ho;Kim, Eung-Tai;Seong, Ki-Jeong
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.172-178
    • /
    • 2009
  • Recently, autopilot is essential to reduce pilot's workload and increase flight safety. Avionics system of the small aircraft also has progressively adopted centralized multi-processor and multi-process computing architectures similar to the integrated modular avionics of B-777. It is increased more and more that importance of the flight control system. In this paper, the performance of the autopilot for the small aircraft has been verified with Hardware-In-the-Loop Simulation(HILS). Also, the autopilot algorithm that is operated in the Flight Control Computer(FCC) for the Fly by Wire(FBW) was verified with PILS and compared with the HILS results for the several commercial autopilots.

  • PDF

Analysis on Flight Test Results of Reconfiguration Flight Control System (재형상 비행제어 시스템의 비행시험 결과 분석)

  • Min, Byoung-Mun;Kim, Seong-Pil;Kim, Bong-Ju;Kim, Eung-Tai;Tahk, Min-Jea
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1244-1252
    • /
    • 2008
  • This paper presents the analysis results obtained by the flight test of reconfiguration flight control system for an aircraft. The reconfiguration flight control system was designed by using control allocation scheme that automatically distributes the demanded control moments determined by control law to each actual control surface. In this paper, some control allocation algorithms for reconfiguration control of general aircraft with redundant control surfaces are summarized and their performance evaluation results through nonlinear simulation and Hardware-In-the-Loop-Simulation (HILS) test are shown. Also, Unmanned Aerial Vehicle (UAV) system adopted as a platform for the flight test of reconfiguration flight controller and the implementation procedure of reconfiguration flight controller into real-time UAV system were introduced. Finally, flight test results were analyzed.

The Engagement HILS Technology Research in the Laboratory for Simulated Warfare between Electronic Warfare Equipment and High-speed Maneuvering Weapon System (실험실에서 전자전 장비와 고속 기동 무기체계 간 실 교전 모의용 조우 HILS 기술 연구)

  • Shin, Dongcho;Choe, Wonseok;Kim, Soyeon;Lee, Chiho
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.49-57
    • /
    • 2019
  • In this paper, we describe the implementation methods and algorithms for the various technologies and devices required for the construction of the engagement HILS(Hardware In the Loop Simulation) in the limited space to simulate the high-speed maneuvering encounter situation of the weapon system in 3-dimensional real world space. Through this research, we have been able to suggest ways to analyze the major design elements of future electronic warfare equipment through experiments simulating actual engagements between various high-speed maneuvering weapons systems and electronic warfare devices in the future battlefield. It was confirmed that the M&S technology could be used to eliminate technical risks, reduce development cost, and shorten development time in the future real system development. The results of this study can be a great assist not only for the field of electronic warfare system research and development, but also for the research & implementation on HILS of various engaging class weapons systems.

A Study on the Appication of Semi-Active Supension Units for a Combat Vehicle by Using HILS (HILS를 활용한 전투차량의 반능동 현수장치 적용에 관한 연구)

  • Kim, Chi-Ung;Kim, Moon-June;Rhee, Eun-Jun;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.967-975
    • /
    • 2010
  • There have been a lot of efforts on the improvement for the ride comfort and handling stability of the combat vehicles. Especially most of vehicles for military purpose have bad inertial condition and severe operating condition such as the rough road driving, and need a high mobility in the emergency status. It is necessary to apply the controlled suspension system in order to improve the vehicle mobile stability and ride comfort ability of crews. A feasibility study is performed on the application of the semi-active suspension system with a magneto-rheological controlled shock absorber for a $6{\times}6$ combat vehicle. First, the dynamic simulation model of the vehicle including the control model for the semi-active suspension system was executed. Based on this model, a hardware-in-the-loop simulation(HILS) system which has a semi-active suspension controller hardware was constructed. After full vehicle simulations were performed in virtual proving courses with this system, the semi-active suspension system was proven to give better ride comfort and handling stability in comparison with the conventional passive suspension system.

Vibration Control of a Passenger Vehicle Featuring MR Suspension Units (MR 현가장치를 장착한 승용 차량의 진동제어)

  • 이환수;최승복;이순규
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2001
  • This paper presents vibration control performance of a passenger vehicle featuring magneto-rheological (MR) suspension units. As a first step, a cylindrical shock absorber is designed and manufactured on the basis of Bingham Property of a commercially available MR fluid. After verifying that the damping force of the shock absorber can be controlled by the intensity of magnetic field(or input current), it is applied to a full-car model. An optimal controller is then formulated to effectively suppress unwanted vibration of the vehicle system. The control performances are evaluated via hardware-in-the-loop simulation(HILS), and presented in both time and frequency domains.

  • PDF

A Study of An Initial Alignment Method of Underwater Vehicle Dropped from Aircraft (항공기에서 투하되는 수중운동체의 초기정렬기법 연구)

  • 류동기;김삼수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2003
  • The Strap Down Inertial Measurement Unit(SDIMU) is recently used for the sensor package of the modern underwater vehicles such as torpedoes and unmanned underwater-vehicles. For using SDIMU, an initial alignment must be carried out before the fire or navigation stage. The general initial alignment methods require that a mother vehicle Is a stationary condition or the Inertial Navigation System(INS) of vehicle is received the specific of data navigation from the mother vehicle. But an underwater vehicle dropped from aircraft is hard to satisfy above both necessary conditions of the general initial alignment. So, we suggest a new strap down initial alignment method of an underwater vehicle dropped from aircraft without using any aided sensors. The highlight point of this method is that a period of initial alignment is not before the fire but during running stage to fix alignment error. And we verify it by analyzing various data of S/W simulations, Hardware In the Loop Simulation(HILS) tests and sea trials.