• Title/Summary/Keyword: HF radar

Search Result 36, Processing Time 0.024 seconds

Current Status and Future Plans for Surface Current Observation by HF Radar in the Southern Jeju (제주 남부 HF Radar 표층해류 관측 현황 및 향후계획)

  • Dawoon, Jung;Jae Yeob, Kim;Jae-il, Kwon;Kyu-Min, Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.198-210
    • /
    • 2022
  • The southern strait of Jeju is a divergence point of the Tsushima Warm Current (TWC), and it is the starting point of the thermohaline circulation in the waters of the Korean Peninsula, affecting the size and frequency of marine disasters such as typhoons and tsunamis, and has a very important oceanographic impact, such as becoming a source of harmful organisms and radioactively contaminated water. Therefore, for an immediate response to these maritime disasters, real-time ocean observation is required. However, compared to other straits, in the case of southern Jeju, such wide area marine observations are insufficient. Therefore, in this study, surface current field of the southern strait of Jeju was calculated using High-Frequency radar (HF radar). the large surface current field is calculated, and post-processing and data improvement are carried out through APM (Antenna Pattern Measurement) and FOL (First Order Line), and comparative analysis is conducted using actual data. As a result, the correlation shows improvement of 0.4~0.7 and RMSE of about 1~19 cm/s. These high-frequency radar observation results will help solve domestic issues such as response to typhoons, verification of numerical models, utilization of wide area wave data, and ocean search and rescue in the future through the establishment of an open data network.

Impact of solar storm on Navaids system (태양폭풍이 항행안전시설에 미치는 영향분석)

  • Jo, Jin-Ho;Park, Jae-Woo;Jeong, Cheol-Oh;Kim, Jae-Hoon;Kim, Gye-Hyeun;Park, Hyeung-Tak
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.2
    • /
    • pp.13-17
    • /
    • 2012
  • The solar storm generated by solar activity can be impact on earth in various area. If solar storm impact on Navaids system, it will be a serious problem for aviation and human safety. The impact analysis of solar strom on Navaids system are performed in three area, ILS, GPS navigation and radio communication for aviation. Analysis result show that Instrument Landing System(LLZ, GP, MB) and Navaids system(VOR, DME, Radar) are not impacted by the solar storm, but GPS system is impacted by solar storm. Also analysis result show that VHF/UHF radio system are not impacted by solar storm, but HF radio system is impacted by solar storm.

한국 남동해역의 해류 모니터링

  • 이재철
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.211-212
    • /
    • 2002
  • 해양과학공동연구소에서는 1999년부터 울산-감포 해역을 중심으로 하는 한국 남동해역 연안용승지역의 해양관측을 계속하면서 동시에 HF Radar를 이용하여 표층해류 모니터링 시스템을 구축하였다.

Evaluation of Antenna Pattern Measurement of HF Radar using Drone (드론을 활용한 고주파 레이다의 안테나 패턴 측정(APM) 가능성 검토)

  • Dawoon Jung;Jae Yeob Kim;Kyu-Min Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.109-120
    • /
    • 2023
  • The High-Frequency Radar (HFR) is an equipment designed to measure real-time surface ocean currents in broad maritime areas.It emits radio waves at a specific frequency (HF) towards the sea surface and analyzes the backscattered waves to measure surface current vectors (Crombie, 1955; Barrick, 1972).The Seasonde HF Radar from Codar, utilized in this study, determines the speed and location of radial currents by analyzing the Bragg peak intensity of transmitted and received waves from an omnidirectional antenna and employing the Multiple Signal Classification (MUSIC) algorithm. The generated currents are initially considered ideal patterns without taking into account the characteristics of the observed electromagnetic wave propagation environment. To correct this, Antenna Pattern Measurement (APM) is performed, measuring the strength of signals at various positions received by the antenna and calculating the corrected measured vector to radial currents.The APM principle involves modifying the position and phase information of the currents based on the measured signal strength at each location. Typically, experiments are conducted by installing an antenna on a ship (Kim et al., 2022). However, using a ship introduces various environmental constraints, such as weather conditions and maritime situations. To reduce dependence on maritime conditions and enhance economic efficiency, this study explores the possibility of using unmanned aerial vehicles (drones) for APM. The research conducted APM experiments using a high-frequency radar installed at Dangsa Lighthouse in Dangsa-ri, Wando County, Jeollanam-do. The study compared and analyzed the results of APM experiments using ships and drones, utilizing the calculated radial currents and surface current fields obtained from each experiment.

Extraction of Ocean Surface Current Velocity Using Envisat ASAR Raw Data (Envisat ASAR 원시자료를 이용한 표층 해류 속도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • Space-borne Synthetic Aperture Radar(SAR) has been one of the most effective tools for monitoring quantitative oceanographic physical parameters. The Doppler information recorded in single-channel SAR raw data can be useful in estimating moving velocity of water mass in ocean. The Doppler shift is caused by the relative motion between SAR sensor and the water mass of ocean surface. Thus, the moving velocity can be extracted by measuring the Doppler anomaly between extracted Doppler centroid and predicted Doppler centroid. The predicted Doppler centroid, defined as the Doppler centroid assuming that the target is not moving, is calculated based on the geometric parameters of a satellite, such as the satellite's orbit, look angle, and attitude with regard to the rotating Earth. While the estimated Doppler shift, corresponding to the actual Doppler centroid in the situation of real SAR data acquisition, can be extracted directly from raw SAR signal data, which usually calculated by applying the Average Cross Correlation Coefficient(ACCC). The moving velocity was further refined to obtain ocean surface current by subtracting the phase velocity of Bragg-resonant capillary waves. These methods were applied to Envisat ASAR raw data acquired in the East Sea, and the extracted ocean surface currents were compared with the current measured by HF-radar.

High-frequency Radar Observations of Convergence (Downwelling) and Water Temperature Variations in Yeongil Bay (영일만에서 고주파 레이더로 관측된 수렴(침강)과 수온변동)

  • Bo Kyeong Hwang;Young Tae Son;Hyoung Rok Kim;Ji Hye Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • High-Frequency Radar (HF-Radar) data of surface currents in Yeongil Bay (a semi-enclosed sea area of the East Sea) was used to investigate the between wind and horizontal surface currents The variation in horizontal and vertical flow of surface currents correlated closely to the water temperature time-series data of densely spaced (1 to 2 m) layers. During the time-series observation period, when the northeast wind prevailed over the entire Yeongil Bay area, a rapid rise in water temperature was recorded across all the layers. Moreover, currents parallel to the wind direction were clearly observed in low-frequency currents of the surface layer. Time-delayed correlation analysis between wind and surface current confirmed that if northeasterly wind blows in Yeongil Bay and continues unidirectionally, a southwestward surface current occured within a short period of time (1 to 2 hours). Convergence and divergence were calculated from the daily average values of low-frequency surface currents. A rapid rise in temperature occurred in the lower layers of water at the observation points, due to the convergence (downwelling) of the surface seawater (relatively high temperature water) associated with the northeasterly wind.

Effective Installation and Operating of High Frequency Ocean Surface Radars in Korea -Part 1: Hardware (고주파 해수면 관측레이더의 국내 설치 및 운용방안 : 하드웨어 부문)

  • Song, Kyu-Min;Cho, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.453-462
    • /
    • 2012
  • Ocean surface current data in Korea was collected using sets of High-Frequency Ocean Surface Radars (HFOSRs) with 25 radial sites in the frequency range of 5~43 MHz. Site selection and the correct installation of HFOSR are very important considerations in order to secure continuous and reliable results. The installation procedures of HFOSR are summarized as follows: 1. Survey area selection; 2. Investigation of ambient radio waves and installation environment; 3. Domestic license of radio station; 4. Installation of antenna and housing of electrical and communication devices. The current work describes the entire processes of HFOSR installation within Korea.

Report on the Present Condition and Operating of High Frequency Ocean Surface Radars in Korea (해수면 관측레이더의 국내 현황 및 운용에 관한 보고)

  • Song, Kyu-Min;Cho, Chol-Ho;Jung, Kyung-Tae;Lie, Heung-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.437-445
    • /
    • 2010
  • There is increasing interest, on the global basis, in the operation of ocean surface radars for measurement of coastal sea surface conditions to support environmental, oceanographic, meteorological, climatological, maritime and disaster mitigation operations. In south Korea, ocean surface radars are operating to monitoring oil spill, outflow from dike or preventing from safety-accidents in the 6 regions (16 radial sites) by main frequency about 13, 25 and 42 MHz until the present. However, that ocean surface radars have been operated on an experimental spectrum basis. In the results of 3~50 MHz band domestic analysis to improve the regulatory status of the spectrum used by oceanographic radars, it was demonstrated that sufficient frequency bands are available for oceanographic radars on the frequency band above 20 MHz. It is difficult to deploy and operate oceanographic radars in the sub-bands below 20 MHz except for 13 MHz band. For using HF ocean surface radars one should understand the spectrum environment in Korea and should prepare a suitable operating system and data processing techniques.

Variations in subtidal surface currents observed with HF radar in the costal waters off the Saemangeum areas (새만금 연안역에서 HF radar에 의해 관측된 조하주기 표층해류의 변화)

  • Kim, Chang-Soo;Lee, Sang-Ho;Son, Young-Tae;Kwon, Hyo-Keun;Lee, Kwang-Hee;Choi, Byoung-Hy
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.56-66
    • /
    • 2008
  • Subtidal surface currents are derived from HF radar measurements in the Saemangeum coastal ocean of the Yellow sea in July 2002 and from September to November 2004. The surface current field is analyzed to examine the effect of wind, river plume and coastline change on the spatial distribution and temporal variation of the surface currents. In July 2002, average wind speed was 0.5 m/s and freshwater discharge from the Keum River was $0.88{\times}10^7\;ton/day$. Temporal mean currents ($\overline{U}$) flow to the northwest with speed of $7{\sim}10\;cm/s$ near the Keum River estuary, to the west as fast as 13 cm/s near the opening gap of the Saemangeum $4^{th}$ dyke, and to the northwest off the Gogunsan-archipelago. This flow pattern is a result of the Keum River plume dispersal and tide-residual currents from the opening gap of the Saemangeum $4^{th}$ dyke. Time series of spatially-averaged current (<$U-\overline{U}$>) direction is highly (r=0.98) correlated with wind direction. From September to November 2004, the opening gap of the Saemangeum $4^{th}$ dyke was closed, northwesterly wind blew with speed of 2.5 m/s on average and the Keum River discharge was $1.19{\times}10^7\;ton/day$. Temporal mean current field ($\overline{U}$) has weak surface flow in most of the coastal ocean and relatively strong currents flow to the southwest with speed of 10 cm/s along the shape coastline of the Gogunsan-archipelago and the Saemangeum $4^{th}$ dyke. The strong flow is generated by the prevailing northwesterly wind which pushes the Keum River plume toward the Saemangeum $4^{th}$ dyke. The residual currents from the opening gap of the Saemangeum $4^{th}$ dyke disappeared and correlation coefficient between time series of spatially-averaged current () direction and the wind direction is 0.69.

Investigation of a possible lunar lava tube in the north of the Rima Galilaei using the surface range of Kaguya Lunar Radar Sounder (LRS) data (Kaguya Lunar Radar Sounder (LRS) 표면 레인지 데이터를 이용한 Rima Galilaei의 북쪽 달 용암 동굴 후보지 조사)

  • Sun, Changwan;Takao, Kobayashi;Kim, Kyeong Ja;Choi, Young-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.313-324
    • /
    • 2017
  • A lava tube is one of the hot issues of lunar science because it is regarded as a good candidate place for setting a lunar base. Recently much effort has been made to find lunar lava tubes. However, preceding works mainly made use of high-resolution lunar surface image data in conjunction with geomorphological consideration to present some lava tube candidates. Yet, those candidates stay no more than indirect indications. We propose a new data analysis technique of High Frequency (HF) radar observation data to find lunar lava tubes of which location depth is smaller than the range resolution of the radar pulse. Such shallow target echoes cannot be resolved from surface echoes, which presents the different location of the lunar surface compared to that of real lunar surface. The proposed technique instead finds the surface range (distance from LRS to the reflector of the most intense signal) anomaly which occurs as a result of the low range resolution of LRS pulse. We applied this technique to the surface range of Kaguya Lunar Radar Sounder (LRS) data. The surface range was deduced to make LRS surface elevation which was compared with the average surface elevation of Kaguya Digital Terrain Model (DTM). An anomalous discrepancy of the surface elevation was found in the Rima Galilaei area, which suggests the existence of a shallow lava tube.