Report on the Present Condition and Operating of High Frequency Ocean Surface Radars in Korea

해수면 관측레이더의 국내 현황 및 운용에 관한 보고

  • Song, Kyu-Min (Marine Environment & Pollution Prevention Research Department, Korea Ocean Research & Development Institute) ;
  • Cho, Chol-Ho (Marine Environment & Pollution Prevention Research Department, Korea Ocean Research & Development Institute) ;
  • Jung, Kyung-Tae (Marine Environment & Pollution Prevention Research Department, Korea Ocean Research & Development Institute) ;
  • Lie, Heung-Jae (Marine Environment & Pollution Prevention Research Department, Korea Ocean Research & Development Institute)
  • 송규민 (한국해양연구원 해양환경방제연구부) ;
  • 조철호 (한국해양연구원 해양환경방제연구부) ;
  • 정경태 (한국해양연구원 해양환경방제연구부) ;
  • 이흥재 (한국해양연구원 해양환경방제연구부)
  • Received : 2010.11.26
  • Accepted : 2010.12.21
  • Published : 2010.12.30

Abstract

There is increasing interest, on the global basis, in the operation of ocean surface radars for measurement of coastal sea surface conditions to support environmental, oceanographic, meteorological, climatological, maritime and disaster mitigation operations. In south Korea, ocean surface radars are operating to monitoring oil spill, outflow from dike or preventing from safety-accidents in the 6 regions (16 radial sites) by main frequency about 13, 25 and 42 MHz until the present. However, that ocean surface radars have been operated on an experimental spectrum basis. In the results of 3~50 MHz band domestic analysis to improve the regulatory status of the spectrum used by oceanographic radars, it was demonstrated that sufficient frequency bands are available for oceanographic radars on the frequency band above 20 MHz. It is difficult to deploy and operate oceanographic radars in the sub-bands below 20 MHz except for 13 MHz band. For using HF ocean surface radars one should understand the spectrum environment in Korea and should prepare a suitable operating system and data processing techniques.

전 세계적으로 환경, 해양, 기상, 기후, 해상 및 재난예방을 지원하기 위한 해수면 조사를 위하여 해양레이더를 운용하고 있으며, 국내에서도 해양유출유와 방조제 유출수 조사 및 해상안전사고 예방을 위하여 13, 25, 42 MHz 대역의 레이더를 6개 지역에서 운용하고 있다. 그러나 측정단파대역을 이용하는 해양레이더는 실험국으로 허가받아 관리되어지고 있으며, 오늘날 주파수 분배가 논의 되고 있다. 해양레이더 주파수 분배를 위한 조사에 의하면 3~50 MHz의 국내 전파환경은 20 MHz 이상의 대역에서 레이더운용에 문제가 없으나 13 MHz를 제외한 20 MHz 이하대역은 사용검토가 필요하다. 국내 사용자는 해양레이더의 운용과 자료처리 기법에 국내의 주파수 환경을 충분히 고려해야 한다.

Keywords

References

  1. 이상호, 문홍배, 백혜연, 김창수, 손영태, 권효근, 최병주 (2008). 금강하구 연안역에서 HF radar로 측정한 유속의 정확도. 한국해양학회지(바다), 13(1), 42-55.
  2. 이주환, 2009, 레이더 주파수 이용 및 분배 동향, 전파방송통신저널 제 11호 pp 16-30 1976-9962.
  3. 한국전파진흥원 (2009). 전파방송관계 법령. http://www.korpa.or.kr. Aceessed 8 Oct 2010.
  4. 한국 WRC-2012준비단 (2010). http://www.koreaitu.or.kr. Aceessed 2 Sep 2010.
  5. CODAR제작사 (2000). Characteristics Codar ocean sensor. http://www.codar.com. Aceessed 18 Oct 2010.
  6. WERA제작사 (2010). Characteristics WERA ocean sensor. http://www.helzel.com. Aceessed 20 Oct 2010.
  7. NICT okinawa (2004). Long-range ocean radar. http://okinawa.nict.go.jp. Aceessed 3 Nov 2010.
  8. Akitsugu Nadai, Hiroshi kuriowa, Masafumi Mizutori and Shinichi Sakai (1997). Measurement of ocean surface currents by CRL HF ocean surface radar of the FMCW type. Part1.radial current velocity. Journal of Oceanography, Vol. 53, 325-342.
  9. Barrick, D.E. (1972). First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Trans. on Antennas and Propagation, AP-20(1), 2-10. https://doi.org/10.1109/TAP.1972.1140123
  10. Barrick, D.E., Headrick, J.M., Bogle, R.W. and Crombie, D.D. (1974). Sea backscatter at HF: Interpretation and utilization of the echo. Proc. of IEEE, 62(6), 673-680. https://doi.org/10.1109/PROC.1974.9507
  11. Barrick, D.E., Evans, M.W. and Weber, B.L. (1977). Ocean surface currents mapped by radar. Science, 198, 138-144. https://doi.org/10.1126/science.198.4313.138
  12. Barrick, D.E. (1979). A coastal radar system for tsunami warning, Remote Sensing of Environ., vol. 8, pp. 353-358. https://doi.org/10.1016/0034-4257(79)90034-8
  13. Crombie, D.D. (1955). Doppler spectrum of sea echo at 13.56 Mc/s. Nature, 175, 681-682. https://doi.org/10.1038/175681a0
  14. ITU-R Doc. 5B/232-E, May 2010; WRC-12 agenda item 1.15 Resolution 612.
  15. ITU-R Doc. 5B/KOR, Oct 2010; The feasibility of sharing subbands between oceanographic radars and fixed and mobile services within the 3-50 MHz band, Preliminary draft new report ITU-R M.[RLS 3-50 MHz sharing].
  16. Jeffery, D.P. and Hans, C.G. (1997). Introduction to High-Frequency Radar: Reality and myth, Oceanography, Vol.10, No.2.
  17. Lipa, B.J. and Nyden, B. (2005). Directional wave information from the SeaSonde, IEEE Jour. Ocean. Eng., Vol.30, No.1, pp 221-231. https://doi.org/10.1109/JOE.2004.839929
  18. Seasonde (2009). Remote unit operator's manual.
  19. Son, Y.T., Lee, S.-H., Lee, J.C. and Kim, D.H. (2003). Surface currents variability observed by HF radar off the Keum River in the west coast of Korea in summer, 2003. Proc. 12th PAMS/JECSS workshop, 7-6-1-4.
  20. Stewart, R.H. and Joy, J.W. (1974). HF radio measurements of surface currents. Deep-Sea Res., 21, 1039-1049.
  21. Teague, C.C. (2001). Comparison of Multifrequency HF Radar and ADCP Measurements of Near-Surface Currents During COPE-3. IEEE J. Oceanic Eng., Vol. 26, No. 3, pp. 399-405 https://doi.org/10.1109/48.946513
  22. Yaremchuk, M. and Sentchev, A. (2009). Mapping radar-derived sea surface currents with a variational method, Continental Shelf Research, v.29, pp. 1711-1722. https://doi.org/10.1016/j.csr.2009.05.016
  23. Yoshikawa, Y., Matsuno, T., Marubayashi, K. and Fukudome, K. (2007). A surface velocity spiral observed with ADCP and HF radar in the Tsushima Strait, J. Geophys. Res., 112, C06022, doi:10.1029/2006JC003625.