DOI QR코드

DOI QR Code

Current Status and Future Plans for Surface Current Observation by HF Radar in the Southern Jeju

제주 남부 HF Radar 표층해류 관측 현황 및 향후계획

  • Dawoon, Jung (Ocean Circulation Research Center, Korea Institute of Ocean Science and Technology) ;
  • Jae Yeob, Kim (Ocean Circulation Research Center, Korea Institute of Ocean Science and Technology) ;
  • Jae-il, Kwon (Marine Disaster Research Center, Korea Institute of Ocean Science and Technology) ;
  • Kyu-Min, Song (Ocean Circulation Research Center, KIOST)
  • 정다운 (한국해양과학기술원 해양순환연구센터) ;
  • 김재엽 (한국해양과학기술원 해양순환연구센터) ;
  • 권재일 (한국해양과학기술원 해양재난.재해연구센터) ;
  • 송규민 (한국해양과학기술원 해양순환연구센터)
  • Received : 2022.11.07
  • Accepted : 2022.11.23
  • Published : 2022.12.31

Abstract

The southern strait of Jeju is a divergence point of the Tsushima Warm Current (TWC), and it is the starting point of the thermohaline circulation in the waters of the Korean Peninsula, affecting the size and frequency of marine disasters such as typhoons and tsunamis, and has a very important oceanographic impact, such as becoming a source of harmful organisms and radioactively contaminated water. Therefore, for an immediate response to these maritime disasters, real-time ocean observation is required. However, compared to other straits, in the case of southern Jeju, such wide area marine observations are insufficient. Therefore, in this study, surface current field of the southern strait of Jeju was calculated using High-Frequency radar (HF radar). the large surface current field is calculated, and post-processing and data improvement are carried out through APM (Antenna Pattern Measurement) and FOL (First Order Line), and comparative analysis is conducted using actual data. As a result, the correlation shows improvement of 0.4~0.7 and RMSE of about 1~19 cm/s. These high-frequency radar observation results will help solve domestic issues such as response to typhoons, verification of numerical models, utilization of wide area wave data, and ocean search and rescue in the future through the establishment of an open data network.

제주 남부 해협은 대마난류의 분기점으로써 한반도 해역 열염순환의 시작점이 되고 태풍, 쓰나미와 같은 해양 재해의 크기와 빈도에 영향을 미치며 유해생물이나 방사능 오염수가 들어오는 공급원이 되는 등 해양지리학적으로 매우 중요한 영향을 미친다. 따라서 이러한 해상재해 및 재난에 대하여 즉각적인 대응을 위해서는 준 실시간의 해양 관측이 필요하다. 그러나 다른 해협에 비하여 제주 남부의 경우 이러한 해상관측이 부족하며 이로 인해 연구결과 또한 저조한 실정이다. 따라서 본 연구에서는 제주 북부에서의 고주파 레이더 설치 경험을 활용하여 제주 남부에서 레이더 관측에 적합한 지역을 산정하고 고주파 레이더를 설치하여 관측을 진행하였다. 이를 통해 제주 남부해협의 광역 표층해류장을 산출하고 APM(Antenna Pattern Measurement)과 FOL(First Order Line)을 통한 후처리 및 자료 개선을 진행하였으며 이에 대해 실측자료를 활용한 비교분석을 진행하였다. 그 결과 상관계수에서 0.4~0.7, RMSE(Root Mean Square Error) 약 1~19 cm/s의 개선 결과를 보였다. 이러한 고주파레이더 관측결과는 자료 개방 네트워크 구축을 통해 차후에 태풍 대응, 수치모델 검증, 광역 파랑자료의 활용, 해양 수색 구조와 같은 국내 현안 문제를 해결하는데 도움을 줄 것이다.

Keywords

Acknowledgement

이 논문은 2022년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(해양수치모델링과 지능정보기술을 활용한 해양예측 정확도 향상 연구).

References

  1. Abascal, A.J., Sanchez, J., Chiri, H., Ferrer, M.I., Cardenas, M., Gallego, A., Castanedo, S., Medina, R., Alonso-Martirena, A., Berx, B., Turrell, W.R. and Hughes, S.L. (2017). Operational oil spill trajectory modelling using HF radar currents: A northwest European continental shelf case study. Marine Pollution Bulletin, 119(1), 336-350. https://doi.org/10.1016/j.marpolbul.2017.04.010
  2. Barrick, D. and Lipa, B. (1986). Correcting for distorted antenna patterns in CODAR ocean surface measurements. IEEE Journal of Oceanic Engineering, 11(2), 304-309. https://doi.org/10.1109/JOE.1986.1145158
  3. Cha, S.C. and Moon, J.H. (2020). Current systems in the adjacent seas of Jeju Island using a high-resolution regional ocean circulation model. Ocean and Polar Research, 42(3), 211-223 (in Korean). https://doi.org/10.4217/OPR.2020.42.3.211
  4. Cho, J.H., Ahn, J.Y., Choi, C.M. and Lee, C.H. (2014). The tendency and the effectiveness of policy in marine accident occurring in the sea around Jeju island. Journal of the Korean Society of Fisheries and Ocean Technology, 50(1), 12-20 (in Korean). https://doi.org/10.3796/KSFT.2014.50.1.012
  5. Choi, J.W., Song, K.M. and Choi, J.Y. (2019). Accuracy improvement of particle tracking model using 2-D current measurement (HF-radar) data. Journal of Coastal Research, 91(SI), 251-255. https://doi.org/10.2112/SI91-051.1
  6. Evans, C., Roarty, H., Smith, M., Kerfoot, J., Glenn, S., Parikh, H. and Whelan, C. (2013). Improvement of surface current measurements with spectra reprocessing for 13 MHz SeaSonde systems. In 2013 OCEANS-San Diego. IEEE. 1-5.
  7. Hong, J.S., Moon, J.H., Yoon, S.H. and Yoon, W.S. (2021). Changes of current and wave patterns depending on typhoon pathways in a shallow channel between Jeju and Udo Island. Ocean and Polar Research, 43(4), 205-217 (in Korean). https://doi.org/10.4217/OPR.2021.43.4.205
  8. Jeong, O.J., Lee, H.J., Pang, I.C. and Lee, J.S. (2008). The characteristics of tide and tidal current around the Jeje-do. In Proceedings of the Korean Society of Coastal and Ocean Engineers Conference. Korean Society of Coastal and Ocean Engineers. 80-83 (in Korean).
  9. Jung, D., Lee, J.S., Baek, J.Y., Nam, J., Jo, Y.H., Song, K.M. and Cheong, Y.I. (2019). High temporal and spatial resolutions of sea surface current from low-altitude remote sensing. Journal of Coastal Research, 90(SI), 282-288. https://doi.org/10.2112/SI90-035.1
  10. Jung, D., Park, J. and Song, K.M. (2021). Improvements for successful mooring of ocean buoys. Ocean and Polar Research, 43(3), 193-203 (in Korean). https://doi.org/10.4217/OPR.2021.43.3.193
  11. Kirincich, A. (2017). Improved detection of the first-order region for direction-finding HF radars using image processing techniques. Journal of Atmospheric and Oceanic Technology, 34(8), 1679-1691. https://doi.org/10.1175/jtech-d-16-0162.1
  12. Lai, Y., Zhou, H., Zeng, Y. and Wen, B. (2017). Quantifying and reducing the DOA estimation error resulting from antenna pattern deviation for direction-finding HF radar. Remote Sensing, 9(12), 1285.
  13. Lai, Y., Wang, Y. and Zhou, H. (2020). First-order peaks determination for direction-finding high-frequency radar. Journal of Marine Science and Engineering, 9(1), 8.
  14. Laws, K., Paduan, J.D. and Vesecky, J. (2010). Estimation and assessment of errors related to antenna pattern distortion in CODAR SeaSonde high-frequency radar ocean current measurements. Journal of Atmospheric and Oceanic Technology, 27(6), 1029-1043. https://doi.org/10.1175/2009JTECHO658.1
  15. Lee, C.H. and Ahn, J.Y. (2019). A study on appearance frequencies and fishing ground exploration of trawl vessels obtained by analyzing AIS data of vessels in the sea around Jeju island. Journal of the Korean Society of Fisheries and Ocean Technology, 55(2), 138-144 (in Korean). https://doi.org/10.3796/KSFOT.2019.55.2.138
  16. Lee, S.H., Moon, H.B., Baek, H.Y., Kim, C.S., Son, Y.T., Kwon, H.K. and Choi, B.J. (2008). Accuracy of HF radar-derived surface current data in the coastal waters off the Keum River estuary. The Sea: Journal of the Korean Society of Oceanography, 13(1), 42-55 (in Korean).
  17. Lie, H.J. and Cho, C.H. (2016). Seasonal circulation patterns of the Yellow and East China Seas derived from satellite-tracked drifter trajectories and hydrographic observations. Progress in Oceanography, 146, 121-141. https://doi.org/10.1016/j.pocean.2016.06.004
  18. Lie, H.J., Cho, C.H., Lee, J.H., Lee, S. and Tang, Y. (2000). Seasonal variation of the Cheju warm current in the northern East China Sea. Journal of Oceanography, 56(2), 197-211. https://doi.org/10.1023/A:1011139313988
  19. Lipa, B., Barrick, D. and Whelan, C. (2019). A quality control method for broad-beam HF radar current velocity measurements. Journal of Marine Science and Engineering, 7(4), 112.
  20. Oh, H.S., Kim, B.S., Kim, W.B., Chang, M.H. and Lee, S.W. (2009). Current status and management of black-faced spoonbills in wintering site of Jeju Island, Korea. Korean J. Ornithol., 16(1), 61-66 (in Korean).
  21. Oh, K.H., Lee, S., Kang, S.K. and Song, K.M. (2017). Oceanic response to typhoon Nari (2007) in the East China Sea. Ocean Science Journal, 52(2), 167-175 (in Korean).
  22. Oh, K.H., Lee, S., Park, J., Song, K.M. and Jung, D. (2020). Estimation of effective range of HFR data and analysis of M 2 tidal current characteristics in the Jeju strait. Ocean and Polar Research, 42(2), 115-131 (in Korean).
  23. Ren, L. and Hartnett, M. (2017). Hindcasting and forecasting of surface flow fields through assimilating high frequency remotely sensing radar data. Remote Sensing, 9(9), 932.
  24. Rohrs, J., Sperrevik, A.K., Christensen, K.H., Brostrom, G. and Breivik, O. (2015). Comparison of HF radar measurements with Eulerian and Lagrangian surface currents. Ocean Dynamics, 65(5), 679-690. https://doi.org/10.1007/s10236-015-0828-8
  25. Song, K.M., Cho, C.H., Jung, K.T. and Lie, H.J. (2010). Report on the present condition and operating of High Frequency Ocean Surface Radars in Korea. Journal of Korean Society of Coastal and Ocean Engineers, 22(6), 437-445 (in Korean).
  26. Song, K.M., Jung, D., Oh, K.H., Shin, C.W., Jo, Y.H., Choi, B.J., Kwon, J. and Lee, S. (2022). Spatio-Temporal Variation of the M2 Tidal Current from Field Observations in the Jeju Strait. Ocean Science Journal, 1-16.
  27. Tian, Y., Wen, B., Li, Z., Yin, Y. and Huang, W. (2019). Analysis and validation of an improved method for measuring HF surface wave radar antenna pattern. IEEE Antennas and Wireless Propagation Letters, 18(4), 659-663. https://doi.org/10.1109/lawp.2019.2900562
  28. Wyatt, L.R. (2012). Shortwave direction and spreading measured with HF radar. Journal of atmospheric and Oceanic Technology, 29(2), 286-299. https://doi.org/10.1175/JTECH-D-11-00096.1
  29. Yoon, D.Y. and Choi, H.W. (2012). Spatial distribution characteristics of vertical temperature profile in the South Sea of Jeju, Korea. Journal of the Korean Association of Geographic Information Studies, 15(4), 162-174 (in Korean). https://doi.org/10.11108/KAGIS.2012.15.4.162
  30. Yuan, Y. and Su, J. (1984). Numerical modelling of the circulation in the East China Sea. In Elsevier Oceanography Series. 39, 167-186. https://doi.org/10.1016/S0422-9894(08)70299-X
  31. Zhang, J.J., Wang, W., Wang, C., Lan, A.L., Yan, J.Y., Xiang, D., Zhang, Q.H., Ruohoniemi, J.M., Kunduri, B.S.R., Nishitani, N., Shi, X. and Qiu, H.B. (2020). First observation of ionospheric convection from the Jiamusi HF radar during a strong geomagnetic storm. Earth and Space Science, 7(1). 1-11.