• 제목/요약/키워드: HERV env gene

검색결과 5건 처리시간 0.016초

A Replication-Competent Retroviral Vector Expressing the HERV-W Envelope Glycoprotein is a Potential Tool for Cancer Gene Therapy

  • Byoung Kwon Kang;Yong-Tae Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.280-288
    • /
    • 2024
  • The fusogenic membrane glycoprotein (FMG) derived from the human endogenous retrovirus-W (HERV-W) exhibits fusogenic properties, making it a promising candidate for cancer gene therapy. When cells are transfected with HERV-W FMG, they can fuse with neighboring cells expressing the receptor, resulting in the formation of syncytia. These syncytia eventually undergo cell death within a few days. In addition, it has been observed that an HERV-W env mutant, which is truncated after amino acid 483, displays increased fusogenicity compared to the wild-type HERV-W env. In this study, we observed syncytium formation upon transfection of HeLa and TE671 human cancer cells with plasmids containing the HERV-W 483 gene. To explore the potential of a semi-replication-competent retroviral (s-RCR) vector encoding HERV-W 483 for FMG-mediated cancer gene therapy, we developed two replication-defective retroviral vectors: a gag-pol vector encoding HERV-W 483 (MoMLV-HERV-W 483) and an env vector encoding VSV-G (pCLXSN-VSV-G-EGFP). When MoMLV-HERV-W 483 and pCLXSN-VSV-G-EGFP were co-transfected into HEK293T cells to produce the s-RCR vector, gradual syncytium formation was observed. However, the titers of the s-RCR virus remained consistently low. To enhance gene transfer efficiency, we constructed an RCR vector encoding HERV-W 483 (MoMLV-10A1-HERV-W 483), which demonstrated replication ability in HEK293T cells. Infection of A549 and HT1080 human cancer cell lines with this RCR vector induced syncytium formation and subsequent cell death. Consequently, both the s-RCR vector and RCR encoding HERV-W 483 hold promise as valuable tools for cancer gene therapy.

Structural and Quantitative Expression Analyses of HERV Gene Family in Human Tissues

  • Ahn, Kung;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • 제28권2호
    • /
    • pp.99-103
    • /
    • 2009
  • Human endogenous retroviruses (HERVs) have been implicated in the pathogenesis of several human diseases as multi-copy members in the human genome. Their gene expression profiling could provide us with important insights into the pathogenic relationship between HERVs and cancer. In this study, we have evaluated the genomic structure and quantitatively determined the expression patterns in the env gene of a variety of HERV family members located on six specific loci by the RetroTector 10 program, as well as real-time RT-PCR amplification. The env gene transcripts evidenced significant differences in the human tumor/normal adjacent tissues (colon, liver, uterus, lung and testis). As compared to the adjacent normal tissues, high levels of expression were noted in testis tumor tissues for HERV-K, in liver and lung tumor tissues for HERV-R, in liver, lung, and testis tumor tissues for HERV-H, and in colon and liver tumor tissues for HERV-P. These data warrant further studies with larger groups of patients to develop biomarkers for specific human cancers.

Genomic Features of Retroelements and Implications for Human Disease

  • Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • 제3권4호
    • /
    • pp.133-141
    • /
    • 2005
  • Most of the endogenous retroviral genes integrated into the primate genome after the split of New World monkeys in the Oligocene era, approximately 33 million years ago. Because they can change the structure of adjacent genes and move between and within chromosomes they may play important roles in evolutionas well as in many kinds of disease and the creation of genetic polymorphism. Comparative analysis of HERVs (human endogenous retroviruses) and their LTR (long terminal repeat) elements in the primate genomes will help us to understand the possible impact of HERV elements in the evolution and phylogeny of primates. For example, HERV-K LTR and SINE-R elements have been identified that have been subject to recent change in the course of primate evolution. They are specific elements to the human genome and could be related to biological function. The HERV-M element is related to the superfamily of HERV-K and is integrated into the periphilin gene as the truncated form, 5'LTR-gag-pol-3'LTR. PCR and RT-PCR approaches indicated that the insertion of various retrotransposable elements in a common ancestor genome may make different transcript variants in different primate species. Examination of the HERV-W elementrevealed that env fragments were detected on human chromosomes 1, 3-7, 12, 14, 17, 20, and X, whilst the pol fragments were detected on human chromosomes 2-8, 10-15, 20, 21, X, and Y. Bioinformatic blast search showed that almost full-length of the HERV-W family was identified on human chromosomes 1-8, 11-15, 17, 18, 21, and X. Expression analysis of HERV-W genes (gag, pol, and env) in human tissues by RT-PCR indicated that gag and pol were expressed in specific tissues, whilst env was constituitively expressed in all tissues examined. DNA sequence based phylogenetic analysis indicated that the gag, pol and env genes have evolved independently during primate evolution. It will thus be of considerable interest to expand the current HERV gene information of various primates and disease tissues.

Molecular Characterization of the HERV-W Env Gene in Humans and Primates: Expression, FISH, Phylogeny, and Evolution

  • Kim, Heui-Soo;Kim, Dae-Soo;Huh, Jae-Won;Ahn, Kung;Yi, Joo-Mi;Lee, Ja-Rang;Hirai, Hirohisa
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.53-60
    • /
    • 2008
  • We characterized the human endogenous retrovirus (HERV-W) family in humans and primates. In silico expression data indicated that 22 complete HERV-W families from human chromosomes 1-3, 5-8, 10-12, 15, 19, and X are randomly expressed in various tissues. Quantitative real-time RT-PCR analysis of the HERV-W env gene derived from human chromosome 7q21.2 indicated predominant expression in the human placenta. Several copies of repeat sequences (SINE, LINE, LTR, simple repeat) were detected within the complete or processed pseudo HERV-W of the human, chimpanzee, and rhesus monkey. Compared to other regions (5'LTR, Gag, Gag-Pol, Env, 3'LTR), the repeat family has been mainly integrated into the region spanning the 5'LTRs of Gag (1398 bp) and Pol (3242 bp). FISH detected the HERV-W probe (fosWE1) derived from a gorilla fosmid library in the metaphase chromosomes of all primates (five hominoids, three Old World monkeys, two New World monkeys, and one prosimian), but not in Tupaia. This finding was supported by molecular clock and phylogeny data using the divergence values of the complete HERV-W LTR elements. The data suggested that the HERV-W family was integrated into the primate genome approximately 63 million years (Myr) ago, and evolved independently during the course of primate radiation.

Z-DNA-Containing Long Terminal Repeats of Human Endogenous Retrovirus Families Provide Alternative Promoters for Human Functional Genes

  • Lee, Du Hyeong;Bae, Woo Hyeon;Ha, Hongseok;Park, Eun Gyung;Lee, Yun Ju;Kim, Woo Ryung;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • 제45권8호
    • /
    • pp.522-530
    • /
    • 2022
  • Transposable elements (TEs) account for approximately 45% of the human genome. TEs have proliferated randomly and integrated into functional genes during hominoid radiation. They appear as right-handed B-DNA double helices and slightly elongated left-handed Z-DNAs. Human endogenous retrovirus (HERV) families are widely distributed in human chromosomes at a ratio of 8%. They contain a 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR structure. LTRs contain the U3 enhancer and promoter region, transcribed R region, and U5 region. LTRs can influence host gene expression by acting as regulatory elements. In this review, we describe the alternative promoters derived from LTR elements that overlap Z-DNA by comparing Z-hunt and DeepZ data for human functional genes. We also present evidence showing the regulatory activity of LTR elements containing Z-DNA in GSDML. Taken together, the regulatory activity of LTR elements with Z-DNA allows us to understand gene function in relation to various human diseases.