Molecular Characterization of the HERV-W Env Gene in Humans and Primates: Expression, FISH, Phylogeny, and Evolution

  • Kim, Heui-Soo (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Dae-Soo (PBBRC, Interdisciplinary Research Program of Bioinformatics, Pusan National University) ;
  • Huh, Jae-Won (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Ahn, Kung (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Yi, Joo-Mi (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Lee, Ja-Rang (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Hirai, Hirohisa (Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University)
  • Received : 2007.11.11
  • Accepted : 2008.01.07
  • Published : 2008.07.31

Abstract

We characterized the human endogenous retrovirus (HERV-W) family in humans and primates. In silico expression data indicated that 22 complete HERV-W families from human chromosomes 1-3, 5-8, 10-12, 15, 19, and X are randomly expressed in various tissues. Quantitative real-time RT-PCR analysis of the HERV-W env gene derived from human chromosome 7q21.2 indicated predominant expression in the human placenta. Several copies of repeat sequences (SINE, LINE, LTR, simple repeat) were detected within the complete or processed pseudo HERV-W of the human, chimpanzee, and rhesus monkey. Compared to other regions (5'LTR, Gag, Gag-Pol, Env, 3'LTR), the repeat family has been mainly integrated into the region spanning the 5'LTRs of Gag (1398 bp) and Pol (3242 bp). FISH detected the HERV-W probe (fosWE1) derived from a gorilla fosmid library in the metaphase chromosomes of all primates (five hominoids, three Old World monkeys, two New World monkeys, and one prosimian), but not in Tupaia. This finding was supported by molecular clock and phylogeny data using the divergence values of the complete HERV-W LTR elements. The data suggested that the HERV-W family was integrated into the primate genome approximately 63 million years (Myr) ago, and evolved independently during the course of primate radiation.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF)

References

  1. Anderssen, S., Sjottem, E., Svineng, G., and Johansen, T. (1997). Comparative analysis of LTRs of the ERV-H family of primatespecific retrovirus-like elements isolated from marmoset, African green monkey, and man. Virology 234, 14-30 https://doi.org/10.1006/viro.1997.8590
  2. Belshaw, R., Pereira, V., Katzourakis, A., Talbot, G., Paces, J., Burt, A., and Tristem, M. (2004). Long-term reinfection of the human genome by endogenous retroviruses. Proc. Natl. Acad. Sci. USA 101, 4894-4899
  3. Blond, J.L., Beseme, F., Duret, L., Bouton, O., Bedin, F., Perron, H., Mandrand, B., and Mallet, F. (1999). Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J. Virol. 73, 1175-1185
  4. Costas, J. (2002). Characterization of the intragenomic spread of the human endogenous retrovirus family HERV-W. Mol. Biol. Evol. 73, 526-533
  5. Costas, J., and Naveira, H. (2000). Evolutionary history of the human endogenous retrovirus family ERV9. Mol. Biol. Evol. 17, 320-330 https://doi.org/10.1093/oxfordjournals.molbev.a026312
  6. Frendo, J.L., Olivier, D., Cheynet, V., Blond, J.L., Bouton, O., Vidaud, M., Rabreau, M., Evain-Brion, D., and Mallet, F. (2003). Direct involvement of HERV-W Eai glycoprotein in human trophoblast cell fusion and differentiation. Mol. Cell. Biol.23, 3566-3574 https://doi.org/10.1128/MCB.23.10.3566-3574.2003
  7. Hirai, H., and Hirai, Y. (2004). FISH mapping for helminth genome. In Methods in Molecular Biology, Parasite Genomics Protocols, S.E. Melville, ed. (Totowa, USA: Human Press). 270, 379-394
  8. Hirai, H., Hasegawa, Y., Kawamoto, Y., and Tokita, E. (1998). Tandem duplication of nucleolus organizer region (NOR) in the Japanese macaque, Macaca fuscata fuscata .Chrom. Res.6, 191-197 https://doi.org/10.1023/A:1009207600920
  9. Hirai, H., Taguchi, T., and Godwin, A.K. (1999). Genomic differentiation of 18S ribosomal DNA and $\beta$-satellite DNA in the hominoid and its evolutionary aspects. Chrom. Res. 7, 531-540 https://doi.org/10.1023/A:1009237412155
  10. Jurka, J. (2000). Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418-420 https://doi.org/10.1016/S0168-9525(00)02093-X
  11. Kim, H.-S., Takenaka, O., and Crow, T.J. (1999). Isolation and phylogeny of endogenous retrovirus sequences belonging to the HERV-W family in primates. J. Gen. Virol. 80, 2613-2619 https://doi.org/10.1099/0022-1317-80-10-2613
  12. Kim, H.-S. (2001). Sequence and phylogeny of HERV-W eca fragments. AIDS Res. Hum. Retroviruses 17, 1665-1671 https://doi.org/10.1089/088922201753342086
  13. Kim, H.-S., and Lee, W.-H. (2001). Human endogenous retrovirus HERV-W family: chromosomal localization, identification, and phylogeny. AIDS Res. Hum. Retroviruses 17, 643-648 https://doi.org/10.1089/088922201300119752
  14. Komurian-Pradel, F., Paranhos-Baccala, G., Bedin, F. Ounanian- Paraz, A., Sodoyer, M., Ott, C., Rajoharison, A., Garcia, E., Mallet, F., Mandrand, B., et al. (1999). Molecular cloning and characterization of MSRV-related sequences associated with retrovirus- like particles. Virology 260, 1-9 https://doi.org/10.1006/viro.1999.9792
  15. Kumar, S., Tamura, K., and Nei, M. (2004). MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5, 150-163 https://doi.org/10.1093/bib/5.2.150
  16. Lebedev, Y.B., Belonovitch, O.S., Zybrova, N.V., Khil, P.P., Kurdyukov, S.G., Vinogradova, T.V., Hunsmann, G., and Sverdlov, E.D. (2000). Differences in HERV-K LTR insertions in orthologous loci of humans and great apes. Gene 247, 265-277 https://doi.org/10.1016/S0378-1119(00)00062-7
  17. Lee, W.J., Kwun, H.J., Kim, H.-S., and Jang, K.L. (2003). Activation of the human endogenous retrovirus W long terminal repeat by herpes simplex virus type 1 immediate early protein 1. Mol. Cells 15, 75-80
  18. Lower, R., Lower, J., and Kurth, R. (1996). The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl. Acad. Sci. USA 93, 5177-5184
  19. Mager, D.L., and Freeman, J.D. (1995). HERV-H endogenous retroviruses: presence in the New World branch but amplification in the Old World primate lineage. Virology 10, 395-404
  20. Mayer, J. (2001). Status of HERV in human cells: expression and coding capacity of human proviruses. Dev. Biol. 106, 439-441
  21. Mi, S., Lee, X., Li, X., Veldman, G.M., Finnerty, H., Racie, L., LaVallie, E., Tang, X.Y., Edouard, P., Howes, S., et al. (2000). Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785-789 https://doi.org/10.1038/35001608
  22. Nakagawa, K., Brusic, V., McColl, G., and Harrison, L.C. (1997). Direct evidence for the expression of multiple endogenous retroviruses in the synovial compartment in rheumatoid arthritis. Arthritis Rheum. 40, 627-638 https://doi.org/10.1002/art.1780400407
  23. Pavliek, A., Jabbari, K., Paes, J., Paes, V., Hejnar, J., and Bernardi, G. (2001). Similar integration but different stability of Alus and LINEs in the human genome. Gene 276, 39-45 https://doi.org/10.1016/S0378-1119(01)00645-X
  24. Perron, H., Garson, J.A., Bedin, F. Beseme, F., Paranhos-Baccala, G., Komurian-Pradel, F., Mallet, F., Tuke, P.W., Voisset, C., Blond, J.L., et al. (1997). Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. Proc. Natl. Acad. Sci. USA 94, 7583-7588
  25. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  26. Tristem, M. (2000). Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J. Virol. 74, 3715-3730 https://doi.org/10.1128/JVI.74.8.3715-3730.2000
  27. Varmus, H.E. (1982). Form and function of retroviral proviruses. Science 216, 812-820 https://doi.org/10.1126/science.6177038
  28. Voisset, C., Bouton, O., Bedin, F., Duret, B., Mandrand, B., Mallet F., and Paranhos-Baccala, G. (2000). Chromosomal distribution and coding capacity of the human endogenous retrovirus HERV-W family. AIDS Res. Hum. Retroviruses 16, 731-740 https://doi.org/10.1089/088922200308738
  29. Whelan, J.A., Russel, N.B., and Whelan, M.A. (2003). A method for the absolute quantification of cDNA using real time PCR. J. Immunol. Meth. 278, 261-269 https://doi.org/10.1016/S0022-1759(03)00223-0
  30. Yi, J.M., Kim, H.M., and Kim, H.-S. (2001). Molecular cloning and phylogenetic analysis of the human endogenous retrovirus HERV-K long terminal repeat elements in various cancer cells. Mol. Cells 12, 137-141
  31. Yi, J.M., Kim, H.M., and Kim, H.-S. (2004a). Expression of the human endogenous retrovirus HERV-W family in various human tissues and cancer cells. J. Gen. Virol. 85, 1203-1210 https://doi.org/10.1099/vir.0.79791-0
  32. Yi, J.M., Kim, T.H., Huh, J.W. Park, K.S., Jang, S.B., Kim, H.M., and Kim, H.S. (2004b). Human endogenous retroviral elements belonging to the HERV-S family from human tissues, cancer cells, and primates: expression, structure, phylogeny and evolution. Gene 342, 283-292 https://doi.org/10.1016/j.gene.2004.08.007
  33. Yi, J.M., Schuebel, K., and Kim, H.-S. (2007). Molecular genetic analyses of human endogenous retroviral elements belonging to the HERV-P family in primates, human tissues, and cancer cells. Genomics 89, 1-9 https://doi.org/10.1016/j.ygeno.2006.08.010