• Title/Summary/Keyword: HEP system

Search Result 99, Processing Time 0.026 seconds

Ecological Data Collection and Habitat Assessment of Kirengeshoma koreana Nakai (나도승마(Kirengeshoma koreana Nakai) 생태정보 수집 및 서식지 평가)

  • Jang, Rae-Ha;Kim, Sunryoung;Tho, Jae-Hwa;Yoon, Young-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.221-234
    • /
    • 2023
  • This study was conducted to develop a habitat assessment system for the endangered wildlife II Kirengeshoma koreana Nakai through in-depth interviews with experts based on field surveys and environmental characteristics through spatial data analysis and literature research. Evaluation factors were selected based on the survey results of 31 variables for 23 K. koreana habitats. Afterwards, the importance and evaluation range for each assessment factor were selected. The selection of survey variables, assessment factors, importance of each factor and assessment range was conducted through in-depth interviews with experts at each stage. As a result, the assessment factors and importance were 16% for precipitation of the wettest month, 10% for vegetation zone, 12% for vegetation type, 10% for crown canopy vitality, 14% for tree layer coverage, 13% for drainage grade, 12% for soil depth, and 13% for distance to stream including dry stream. This study provides basic ecological information and a habitat assessment system for K. koreana habitats. Therefore, it can be used as primary data for preparing an endangered wildlife conservation policy, preparing a habitat improvement plan, and selecting an alternative habitat.

Effect of D-Fructose on Sugar Transport Systems in Trichoplusia ni Cells and Photolabeling of the Trichoplusia ni Cell-Expressed Human HepG2 Type Glucose Transport Protein (Trichoplusia ni 세포에 내재하는 당 수송체에 D-fructose가 미치는 효과와 Trichoplusia ni 세포에 발현된 사람 HepG2형 포도당 수송 단백질의 photolabelling)

  • Lee, Chong-Kee
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.86-91
    • /
    • 2014
  • Trichoplusia ni cells are used as a host permissive cell line in the baculovirus expression system, which is useful for large-scale production of human sugar transport proteins. However, the activity of endogenous sugar transport systems in insect cells is extremely high. Therefore, the transport activity resulting from the expression of exogenous transporters is difficult to detect. Furthermore, very little is known about the nature of endogenous insect transporters. To exploit the expression system further, the effect of D-fructose on 2-deoxy-D-glucose (2dGlc) transport by T. ni cells was investigated, and T. ni cell-expressed human transporters were photolabeled with [$^3H$] cytochalasin B to develop a convenient method for measuring the biological activity of insect cell-expressed transporters. The uptake of 1 mM 2dGlc by uninfected- and recombinant AcMPV-GTL infected cells was examined in the presence and absence of 300 mM of D-fructose, with and without $20{\mu}M$ of cytochalasin B. The sugar uptake in the uninfected cells was strongly inhibited by fructose but only poorly inhibited by cytochalasin B. Interestingly, the AcMPV-GTL-infected cells showed an essentially identical pattern of transport inhibition, and the rate of 2dGlc uptake was somewhat less than that seen in the non-infected cells. In addition, a sharply labeled peak was produced only in the AcMPV-GTL-infected membranes labeled with [$^3H$] cytochalasin B in the presence of L-glucose. No peak of labeling was seen in the membranes prepared from the uninfected cells. Furthermore, photolabeling of the expressed protein was completely inhibited by the presence of D-glucose, demonstrating the stereoselectivity of labeling.

Enhancement of Anticancer Activities from Lithospermum erythrorhizon Extracts by Ultra High Pressure Process (초고압 가공 공정을 통한 지치 추출물의 항암 활성 증진)

  • Seo, Yong-Chang;Choi, Woon-Yong;Kim, Ji-Seon;Cho, Jeong-Sub;Kim, Young-Ock;Kim, Jin-Chul;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.2
    • /
    • pp.103-110
    • /
    • 2011
  • This study was performed to enhance anticancer activities of Lithospermum erythrorhizon by eluting high amount of shikonin through ultra high pressure process. Extraction yield was increased up to 5~10% by ultra high pressure process, compare to the normal extraction processes such as water solvent extraction, 70% ethyl alcohol solvent extraction. The cytotoxicity of the extracts ($1.0{\mu}g/m{\ell}$) from ultra high pressure process was showed the lowest cytotoxicity 13.4% for human lung cell (HEL299). The anticancer activities showed 80~85% by adding $1.0{\mu}g/m{\ell}$ of the extracts from ultra high pressure process in several cancer cell lines such as AGS, Hep3B, MCF-7 and HeLa cells. Among them, MCF-7 cell of the endocrine system was highest inhibited than other cells. The anticancer activities of the extracts from ultra high pressure extraction process showed 10~15%, which was higher than the extracts from normal extraction processes. From HPLC analysis of the extracts, the contents of shikonin in the extracts from ultra high pressure process was 11.42% (w/w), which was 20% higher than others. This results indicate that ultra high pressure process could increase the extraction yield of shikonin and other contents, which resulted in higher anticancer activities.

Study of the Suppressive Effect and Its Mechanism of Amomum Cardamomum L. on Free Fatty Acid-induced Liver Steatosis (지방간에 대한 백두구 에틸아세테이트 추출물의 억제 효과 및 기전 연구)

  • Lim, Dong Woo;Kim, Hyuck;Park, Sung Yun;Park, Sun Dong;Park, Won Hwan;Kim, Jai Eun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.159-166
    • /
    • 2017
  • Through this study, the authors investigated the anti-steatosis effects of the Amomum cardamomum ethyl acetate fraction in free fatty acids (FFAs)-induced human hepatocellular carcinoma HepG2 cells. The ethyl acetate fraction of Amomum cardamomum (ACEA) was extracted with 70% ethanol and then the extract was evaporated using a rotary evaporator prior to sequential fractionation. Human hepatocellular carcinoma were treated with different concentrations of ACEA in the presence and absence of FFAs. To demonstrate the reactive oxygen species (ROS) scavenging activity, DCFDA level was analyzed by using in vitro assay system. Cell viability, lipid accumulation, intracellular triglycerides, malondialdehyde (MDA), liver steatosis related signaling molecules and inflammatory cytokines such as interleukin (IL)-6, 8, tumor necrosis factor-alpha ($TNF-{\alpha}$) were also investigated. As results, ACEA inhibited the FFAs-induced ROS, lipid accumulation, intracellular triglycerides, and MDA in a dose dependent manner. Treatment of human hepatocellular cells with ACEA induced the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK) and carnitine palmitoyltransferase I (CPT1) expression using western blot analysis. ACEA also potently suppressed the FFAs-induced inflammatory cytokines including IL-6, IL-8 and $TNF-{\alpha}$. These results suggest that the ethyl acetate fraction of Amomum cardamoum extract own inhibitory effects of liver steatosis by inhibiting ROS, lipid accumulation, intracellular triglycerides, MDA through AMPK signaling and anti-inflammatory actions.

Cooperative transcriptional activation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 genes by nuclear receptors including Liver-X-Receptor

  • Back, Su Sun;Kim, Jinsu;Choi, Daehyung;Lee, Eui Sup;Choi, Soo Young;Han, Kyuhyung
    • BMB Reports
    • /
    • v.46 no.6
    • /
    • pp.322-327
    • /
    • 2013
  • The ATP-binding cassette transporters ABCG5 and ABCG8 form heterodimers that limit absorption of dietary sterols in the intestine and promote cholesterol elimination from the body through hepatobiliary secretion. To identify cis-regulatory elements of the two genes, we have cloned and analyzed twenty-three evolutionary conserved region (ECR) fragments using the CMV-luciferase reporter system in HepG2 cells. Two ECRs were found to be responsive to the Liver-X-Receptor (LXR). Through elaborate deletion studies, regions containing putative LXREs were identified and the binding of $LXR{\alpha}$ was demonstrated by EMSA and ChIP assay. When the LXREs were inserted upstream of the intergenic promoter, synergistic activation by $LXR{\alpha}/RXR{\alpha}$ in combination with GATA4, $HNF4{\alpha}$, and LRH-1, which had been shown to bind to the intergenic region, was observed. In conclusion, we have identified two LXREs in ABCG5/ABCG8 genes for the first time and propose that these LXREs, especially in the ECR20, play major roles in regulating these genes.

Effects of Scolopendrae corpus on turmor promotion in two-stage carcinogenesis in mice (오공(蜈蚣)이 마우스에서 2단계(段階) 발암화(發癌化) 과정(過程)에 미치는 영향(影響))

  • Kim, Kil-Sub;Hwang, Young-Guen;Yoon, Cheol-Ho;Seo, Un-Kyo;Kim, Jong-Dae;Jeong, Ji-Cheon;Nam, Kyung-Soo;Kang, Jeong-Jun
    • The Journal of Internal Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.133-142
    • /
    • 1999
  • To clarifiy the effects of Scolopendrae corpus(S-C) on turmor promotion in two-stage carcinogenesis in mice was investigated. In vivo system, S-C were seen to gave an inhibitory activity on TPA-induced mouse ear edema. In addition, the S-C were proved to have antitumor-promoting activity in two-stage mouse skin carcinogenesis induced by DMBA and two-stage mouse lung carcinogenesis induced by 4-NQO as a initiator plus TPA and glycerol as a promoter. Moreover, S-C significantly exhibited an cytolytic effect in $HepG_2$ cells and showed significant antitumor activity against Sarcoma-180 bearing mice by oral administration. These results suggest that S-C could be effective in adjuvant chemotherapy for human cancer.

  • PDF

Complexation of Adiponectin-encoding Plasmid DNA with Rosiglitazone-loaded Cationic Liposomes

  • Davaa, Enkhzaya;Jeong, Ui-Hyeon;Shin, Baek-Ki;Choi, Soon-Gil;Myung, Chang-Seon;Park, Jeong-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.6
    • /
    • pp.357-362
    • /
    • 2010
  • To enhance therapeutic effects of insulin-sensitizing adipokine, ADN gene and potent agonists, rosiglitazone for the $PPAR{\gamma}$, cationic liposomes as non-viral vectors were formulated. The particle size and zeta potential of drug loaded and unloaded cationic liposomes were investigated. The complex formation between cationic liposomes and negatively charged plasmid DNA was confirmed and the protection from DNase was observed. In vitro transfection was investigated in HepG2, HeLa, and HEK293 cells by mRNA expression of ADN. Encapsulation efficacy of rosiglitazone-loaded liposomes was determined by UV detection. Particle sizes of cationic liposomes were in the range of 110-170 nm and those of rosiglitazone-loaded cationic liposomes were in the range of 130-180 nm, respectively. Gel retardation of complexes indicated that the complex was formed at weight ratios of cationic lipid to plasmid DNA higher than 20:1. Both complexes protected plasmid DNA from DNase either drug free or drug loading. Encapsulation efficiency of rosiglitazone-loaded emulsion was increased by drug dose. The mRNA expression levels of ADN were dose-dependently increased in cells transfected with plasmid DNA. Therefore, cationic liposomes could be potential co-delivery system for drug and gene.

NF-κB Inhibition and PPAR Activation by Phenolic Compounds from Hypericum perforatum L. Adventitious Root

  • Li, Wei;Ding, Yan;Quang, Tran Hong;Nguyen, Thi Thanh Ngan;Sun, Ya Nan;Yan, Xi Tao;Yang, Seo Young;Choi, Chun Whan;Lee, Eun Jung;Paek, Kee Yoeup;Kim, Young Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1407-1413
    • /
    • 2013
  • A new compound, perforaphenonoside A (1), along with 11 known compounds (2-12) were isolated from a methanol extract of adventitious roots of Hypericum perforatum. Their chemical structures were elucidated using chemical and physical methods as well as comparison of NMR and mass spectral data with previously reported data. Their inhibition of NF-${\kappa}B$ and activation of PPAR was measured in HepG2 cells using a luciferase reporter system. Among the compounds 3, 6, 7 and 12 inhibited NF-${\kappa}B$ activation stimulated by TNF${\alpha}$ in a dose-dependent manner, with $IC_{50}$ values ranging from 0.85 to $8.10{\mu}M$. Moreover, compounds 1-3, 7, 11 and 12 activated the transcriptional activity of PPARs in a dose-dependent manner, with $EC_{50}$ values ranging from 7.3 to $58.7{\mu}M$. The transactivational effects of compounds 1-3, 7, 11 and 12 were evaluated on three individual PPAR subtypes. Among them, compound 2 activated $PPAR{\alpha}$ transcriptional activity, with 153.97% stimulation at $10{\mu}M$, while compounds 1, 2 and 11 exhibited transcriptional activity of $PPAR{\gamma}$, with stimulation from 124.76% to 126.91% at $10{\mu}M$.

Six new dammarane-type triterpene saponins from Panax ginseng flower buds and their cytotoxicity

  • Li, Ke-Ke;Li, Sha-Sha;Xu, Fei;Gong, Xiao-Jie
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.215-221
    • /
    • 2020
  • Background: Panax ginseng has been used for a variety of medical purposes in eastern countries for more than two thousand years. From the extensive experiences accumulated in its long medication use history and the substantial strong evidence in modern research studies, we know that ginseng has various pharmacological activities, such as antitumor, antidiabetic, antioxidant, and cardiovascular system-protective effects. The active chemical constituents of ginseng, ginsenosides, are rich in structural diversity and exhibit a wide range of biological activities. Methods: Ginsenoside constituents from P. ginseng flower buds were isolated and purified by various chromatographic methods, and their structures were identified by spectroscopic analysis and comparison with the reported data. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H- tetrazolium bromide method was used to test their cytotoxic effects on three human cancer cell lines. Results: Six ginsenosides, namely 6'-malonyl formyl ginsenoside F1 (1), 3β-acetoxyl ginsenoside F1 (2), ginsenoside Rh24 (6), ginsenoside Rh25 (7), 7β-hydroxyl ginsenoside Rd (8) and ginsenoside Rh26 (10) were isolated and elucidated as new compounds, together with four known compounds (3-5 and 9). In addition, the cytotoxicity of these isolated compounds was shown as half inhibitory concentration values, a tentative structure-activity relationship was also discussed based on the results of our bioassay. Conclusion: The study of chemical constituents was useful for the quality control of P. ginseng flower buds. The study on antitumor activities showed that new Compound 1 exhibited moderate cytotoxic activities against HL-60, MGC80-3 and Hep-G2 with half inhibitory concentration values of 16.74, 29.51 and 20.48 μM, respectively.

Salmonella Invasion Gene Regulation: A Story of Environmental Awareness

  • Jones Bradley D.
    • Journal of Microbiology
    • /
    • v.43 no.spc1
    • /
    • pp.110-117
    • /
    • 2005
  • Salmonella enterica serovar Typhimurium causes human gastroenteritis and a systemic typhoid-like infection in mice. A critical virulence determinant of Salmonella is the ability to invade mammalian cells. The expression of genes required for invasion is tightly regulated by environmental conditions and a variety of regulatory genes. The hilA regulator encodes an OmpR/ToxR family transcriptional regulator that activates the expression of invasion genes in response to both environmental and genetic regulatory factors. Work from several laboratories has highlighted that regulation of hilA expression is a key point for controlling expression of the invasive phenotype. A number of positive regulators of hilA expression have been identified including csrAB, sirA/barA, pstS, hilC/sirC/sprA, fis, and hilD. HilD, an AraC/XylS type transcriptional regulator, is of particular importance as a mutation in hilD results in a 14-fold decrease in chromosomal hilA::Tn5lacZY-080 expression and a 53-fold decrease in invasion of HEp-2 cells. It is believed that HilD directly regulates hilA expression as it has been shown to bind to hilA promoter sequences. In addition, our research group, and others, have identified genes (hilE, hha, pag, and lon) that negatively affect hilA transcription. HilE appears to be an important Salmonella-specific regulator that plays a critical role in inactivating hilA expression. Recent work in our lab has been directed at understanding how environmental signals that affect hilA expression may be processed through a hilE pathway to modulate expression of hilA and the invasive phenotype. The current understanding of this complex regulatory system is reviewed.