• Title/Summary/Keyword: HAI controller

Search Result 113, Processing Time 0.025 seconds

Application of Self Tuning Fuzzy Controller for System Stability Improvement (시스템 안정도 개선을 위한 자기조정 퍼지제어기 적용)

  • Hur, Dong-Ryol;Joo, Seok-Min;Kim, Hai-Jai
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.60-63
    • /
    • 2002
  • This paper presents a control approach for designing a self tuning fuzzy controller for SVC system, A SVC constructed by a Fixed Capacitor and a Thyristor Controlled Reactor is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage, The proposed parameter self tuning algorithm of fuzzy controller is based on the steepest decent method using two direction vectors which make error between inference values of fuzzy controller and output values of the specially selected PSS reduce steepestly, The related simulation results show that the proposed fuzzy controller is more powerful than the conventional ones.

  • PDF

An Adaptive Controller based on Zero-gain prediction Approach (영 이득 예측법에 의한 적응 제어기)

  • Yun, Se-Bong;Han, Hong-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.73-75
    • /
    • 1987
  • The paper proposes a class of discrete-time adaptive controller which may be applicable without sufficient a priori information. Against choices of the Information, GPC algorithm may seem to be more robust than any other methods reported, but it is the method based on Indirect approach. It is, therefore, reasonable to propose an algorithm via the zero-gain prediction, in which the control parameters are directly estimated and calculated.

  • PDF

Robust Adaptive Output Feedback Controller Using Fuzzy-Neural Networks for a Class of Uncertain Nonlinear Systems (퍼지뉴럴 네트워크를 이용한 불확실한 비선형 시스템의 출력 피드백 강인 적응 제어)

  • Hwang, Young-Ho;Lee, Eun-Wook;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we address the robust adaptive backstepping controller using fuzzy neural network (FHIN) for a class of uncertain output feedback nonlinear systems with disturbance. A new algorithm is proposed for estimation of unknown bounds and adaptive control of the uncertain nonlinear systems. The state estimation is solved using K-fillers. All unknown nonlinear functions are approximated by FNN. The FNN weight adaptation rule is derived from Lyapunov stability analysis and guarantees that the adapted weight error and tracking error are bounded. The compensated controller is designed to compensate the FNN approximation error and external disturbance. Finally, simulation results show that the proposed controller can achieve favorable tracking performance and robustness with regard to unknown function and external disturbance.

  • PDF

Induction Motor Control Using Adaptive Backstepping and MRAS (적응 백스테핑과 MRAS를 이용한 유도전동기 제어)

  • Lee, Sun-Young;Park, Ki-Kwang;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.77-78
    • /
    • 2008
  • This paper presents to control speed of induction motors with uncertainties. We use an adaptive backstepping controller with fuzzy neural networks(FNNs) and model reference adaptive system(MRAS) at Indirect vector control method. The adaptive backstepping controller using FNNs can control speed of induction motors even we have a minimum of information. And this controller can be used to approximate most of uncertainties which are derived from unknown motor parameters, load torque such as disturbances. MRAS estimates to rotor resistance and also can find optimal flux to minimize power losses of Induction motor. Indirect vector PI current controller is used to keep rotor flux constant without measuring or estimating the rotor flux. Simulation and experiment results are verified the effectiveness of this proposed approach.

  • PDF

Robust Adaptive Sliding Mode Controller for PMSM Servo Drives System (강인 적응성 슬라이딩을 이용한 PMSM 서보드라이브 시스템 제어기)

  • Park, Ki-Kwang;Han, Byung-Jo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1640_1641
    • /
    • 2009
  • Dynamic friction and force ripple are the most predominant factors that affect the positioning accuracy of permanent magnet synchronous motor(PMSM) servo drives system, and it is desirable to compensate them in finite time with a continuous control law. In this paper, based on LuGre dynamic friction model, a robust adaptive skidding mode controller is proposed to compensate the nonlinear effect of friction and force ripple. The controller scheme consists of a PD component and a robust adaptive sliding mode controller for estimating the unknown system parameter. Using Lyapunov stability theorem, asymptotic stability analysis and position tracking performance are guaranteed. Simulation results well verify the feasibility and the effectiveness of the proposed scheme for high0precision motion trajectory tracking.

  • PDF

Robust Adaptive Position Control for Servomotor Drive Using Fuzzy-neural Networks (퍼지 뉴럴 네트워크를 이용한 서보모터 드라이브의 강인 적응 위치 제어)

  • Hwang, Young-Ho;Lee, An-Yong;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1834-1835
    • /
    • 2006
  • A robust adaptive position control algorithm is proposed for servomotor drive system with uncertainties and load disturbance. The proposed controller is comprised of a nominal controller and a robust control. The nominal controller is designed in the condition without all the external load disturbance, nonlinear friction and unpredicted uncertainties. The robust controller containing lumped uncertainty approximator using fuzzy-neural network(FNN) is designed to dispel the effect of uncertainties and load disturbance. The interconnection weight of the FNN can be online tuned in the sense of the Lyapunov stability theorem thus asymptotic stability of the proposed control system can be guaranteed. Finally, simulation results verify that the proposed control algorithm can achieve favorable tracking performance for the induction servomotor drive system.

  • PDF

A Robust Adaptive Direct Controller for Non-Linear First Order Systems

  • Nguyen, Thi-Hong-Thanh;Cu, Xuan-Thinh;Nguyen, Thi-Minh-Huong;Ha, Thi-Hoan;Nguyen, Dac-Hai;Tran, Van-Truong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.990-993
    • /
    • 2005
  • This paper presents new results on designing a robust adaptive direct controller for a class of non-linear first order systems. The designing method based on the use of dead zone in the parameters' update law. It is shown that the size of the dead zone does not depend on the upper bounds of the disturbances. That means that even if the bounds are large, the tracking error will always converge to a set of the dead zone size. However, in the ideal case, when the exogenous signal functions and the function represents un-modeled dynamics of the systems equal to zero, the proposed controller does nt mean the convergence to zero of the tracking error. Computer simulation results show the effectiveness of the controller in dealing with the stated problems.

  • PDF

A Study on the Implementation of a DC Servo Motor Speed Controller Using Self-tuning PID Algorithm, with Multi-processor (자기동조 PID 알고리즘을 이용한 다중processor 방식의 DC 서보모타 속도제어기의 구현)

  • Chung, Kee-Chull;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.125-128
    • /
    • 1989
  • This paper presents a DC servo motor controller using self-tuning PID algorithm, which can support Multi-processor for the real time processing. Computer simulation as well as experiment using Multi-processor(8088) are implemented with self-tuning PID algorithm. Presented algorithm is used to compare the performance of the controller with that of the classical PID controller through computer simulation and experiment. The result which use the Self-Tuning algorithm show that motor output follows the reference input trajectory fairly well inspite of load disturbances and parameter variations.

  • PDF

The Design of Robust Direct Adaptive Controllers for Improved Transient Performance (과도성능 개선을 위한 강인한 직접 적응 제어기의 설계)

  • Lee, Hyo-Seop;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.11
    • /
    • pp.510-513
    • /
    • 2002
  • In this paper, the robust adaptive controller design scheme is studied for nonlinear systems in the presence of bounded disturbances A new robust adaptive controller is designed using high-order neural networks, which avoids the singularity problem in adaptive nonlinear control. The stability of the resulting adaptive system with the proposed adaptive controller si guaranteed by suitably choosing the design parameters and initial conditions. I addition, the proposed adaptive controller provides improved transient performance and fast on-line adaptation. The ability and effectiveness of the proposed adaptive control scheme is shown trough simulations of a simple nonlinear system.