• Title/Summary/Keyword: H2S sensing

Search Result 211, Processing Time 0.049 seconds

A Threshold-voltage Sensing Circuit using Single-ended SAR ADC for AMOLED Pixel (단일 입력 SAR ADC를 이용한 AMOLED 픽셀 문턱 전압 감지 회로)

  • Son, Jisu;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.719-726
    • /
    • 2020
  • A threshold-voltage sensing circuit is proposed to compensate for pixel aging in active matrix organic light-emitting diodes. The proposed threshold-voltage sensing circuit consists of sample-hold (S/H) circuits and a single-ended successive approximation register (SAR) analog-to-digital converter (ADC) with a resolution of 10 bits. To remove a scale down converter of each S/H circuit and a voltage gain amplifier with a signl-to-differentail converter, the middle reference voltage calibration and input range calibration for the single-ended SAR ADC are performed in the capacitor digital-to-analog converter and reference driver. The proposed threshold-voltage sensing circuit is designed by using a 180-nm CMOS process with a supply voltage of 1.8 V. The ENOB and power consimption of the single-ended SAR ADC are 9.425 bit and 2.83 mW, respectively.

Hydrogen and Ethanol Gas Sensing Properties of Mesoporous P-Type CuO

  • Choi, Yun-Hyuk;Han, Hyun-Soo;Shin, Sun;Shin, Seong-Sik;Hong, Kug-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.222-222
    • /
    • 2012
  • Metal oxide gas sensors based on semiconductor type have attracted a great deal of attention due to their low cost, flexible production and simple usability. However, most works have been focused on n-type oxides, while the characteristics of p-type oxide gas sensors have been barely studied. An investigation on p-type oxides is very important in that the use of them makes possible the novel sensors such as p-n diode and tandem devices. Monoclinic cupric oxide (CuO) is p-type semiconductor with narrow band gap (~1.2 eV). This is composed of abundant, nontoxic elements on earth, and thus low-cost, environment-friendly devices can be realized. However, gas sensing properties of neat CuO were rarely explored and the mechanism still remains unclear. In this work, the neat CuO layers with highly ordered mesoporous structures were prepared by a template-free, one-pot solution-based method using novel ink solutions, formulated with copper formate tetrahydrate, hexylamine and ethyl cellulose. The shear viscosity of the formulated solutions was 5.79 Pa s at a shear rate of 1 s-1. The solutions were coated on SiO2/Si substrates by spin-coating (ink) and calcined for 1 h at the temperature of $200{\sim}600^{\circ}C$ in air. The surface and cross-sectional morphologies of the formed CuO layers were observed by a focused ion beam scanning electron microscopy (FIB-SEM) and porosity was determined by image analysis using simple computer-programming. XRD analysis showed phase evolutions of the layers, depending on the calcination temperature, and thermal decompositions of the neat precursor and the formulated ink were investigated by TGA and DSC. As a result, the formation of the porous structures was attributed to the vaporization of ethyl cellulose contained in the solutions. Mesoporous CuO, formed with the ink solution, consisted of grains and pores with nano-meter size. All of them were strongly dependent on calcination temperature. Sensing properties toward H2 and C2H5OH gases were examined as a function of operating temperature. High and fast responses toward H2 and C2H5OH gases were discussed in terms of crystallinity, nonstoichiometry and morphological factors such as porosity, grain size and surface-to-volume ratio. To our knowledge, the responses toward H2 and C2H5OH gases of these CuO gas sensors are comparable to previously reported values.

  • PDF

A study on CO gas sensing Characteristics of Pt-SiC $SnO_2$-pt-SiC Schottky Diodes (Pt 및 Pt-$SnO_2$를 전극으로 하는 SiC 쇼트키 다이오드의 CO 가스 감응 특성)

  • Kim, C.K.;Noh, I.H.;Yang, S.J.;Lee, J.H.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.805-808
    • /
    • 2002
  • A carbon monoxide gas sensor utilizing Pt-SiC, Pt-SnO2-SiC diode structure was fabricated. Since the operating temperature for silicon devices in limited to 200oC, sensor which employ the silicon substrate can not at high temperature. In this study, CO gas sensor operating at high temperature which utilize SiC semiconductor as a substrate was developed. Since the SiC is the semiconductor with wide band gap. the sensor at above $700^{\circ}C$. Carbon monoxide-sensing behavior of Pt-SiC, Pt-SnO2-SiC diode is systematically compared and analyzed as a function of carbon monoxide concentration and temperature by I-V and ${\Delta}$I-t method under steady-state and transient conditions.

  • PDF

Haematococcus pluvialis Cell-Mass Sensing Using Ultraviolet Fluorescence Spectroscopy

  • Lababpour, Abdolmajid;Hong, Seong-Joo;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1922-1929
    • /
    • 2007
  • A simple whole-cell-based sensing system is proposed for determining the cell mass of H. pluvialis using ultraviolet fluorescence spectroscopy. An emission signal at 368 nm was used to detect the various kinds of green, green-brown, brown-red, and red H. pluvialis cells. The fluorescence emission intensities of the cells were highest at 368 nm with an excitation wavelength of 227 nm. An excitation wavelength of 227 nm was then selected for cell-mass sensing, as the emission fluorescence intensities of the cell suspensions were highest at this wavelength after subtracting the background interference. The emission fluorescence intensities of HPLC-grade water, filtered water, and HPLC-grade water containing a modified Bold's basal medium (MBBM) were measured and the difference was less than 1.6 for the selected wavelengths. Moreover, there was no difference in the emission intensity at 368 nm among suspensions of the various morphological states of the cells. A calibration curve of the fluorescence emission intensities. and cell mass was obtained with a high correlation ($R^2=0.9938$) for the various morphological forms of H. pluvialis. Accordingly, the proposed method showed no significant dependency on the various morphological cell forms, making it applicable for cell-mass measurement. A high correlation was found between the fluorescence emission intensities and the dry cell weight with a mixture of green, green-brown, brown-red, and red cells. In conclusion, the proposed model can be directly used for cell-mass sensing without any pretreatment and has potential use as a noninvasive method for the online determination of algal biomass.

Development of TPF Generation SIW for KOMPSAT-2 X-Band Antenna Motion Control

  • Kang C. H.;Park D. J.;Seo S. B.;Koo I. H.;Ahn S. I.;Kim E. K.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.485-488
    • /
    • 2005
  • The 2nd KOrea Multi-Purpose Satellite (KOMPSAT -2) has been developed by Korea Aerospace Research Institute (KARI) since 2000. Multi Spectral Camera (MSC) is the payload for KOMPSAT -2, which will provide the observation imagery around Korean peninsula with high resolution. KOMPSAT-2 has adopted X-band Tracking System (XTS) for transmitting earth observation data to ground station. For this, data which describes and controls the pre-defined motion of each on-board X-Band antenna in XTS, must be transmitted to the spacecraft as S-Band command and it is called as Tracking Parameter Files (TPF). In this paper, the result of the development of TPF Generation S/W for KOMPSAT-2 X-Band Antenna Motion Control.

  • PDF

Ground-based Remote Sensing Technology for Precision Farming - Calibration of Image-based Data to Reflectance -

  • Shin B.S.;Zhang Q.;Han S.;Noh H.K.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Assessing health condition of crop in the field is one of core operation in precision fanning. A sensing system was proposed to remotely detect the crop health condition in terms of SP AD readings directly related to chlorophyll contents of crop using a multispectral camera equipped on ground-based platform. Since the image taken by a camera was sensitive to changes in ambient light intensity, it was needed to convert gray scale image data into reflectance, an index to indicate the reflection characteristics of target crop. A reference reflectance panel consisting of four pieces of sub-panels with different reflectance was developed for a dynamic calibration, by which a calibration equation was updated for every crop image captured by the camera. The system performance was evaluated in a field by investigating the relationship between com canopy reflectance and SP AD values. The validation tests revealed that the com canopy reflectance induced from Green band in the multispectral camera had the most significant correlation with SPAD values $(r^2=0.75)$ and NIR band could be used to filter out unwanted non-crop features such as soil background and empty space in a crop canopy. This research confirmed that it was technically feasible to develop a ground-based remote sensing system for assessing crop health condition.

  • PDF

Enhanced pH Response of Solution-gated Graphene FET by Using Vertically Grown ZnO Nanorods on Graphene Channel

  • Kim, B.Y;Jang, M.;Shin, K.-S.;Sohn, I.Y;Kim, S.-W.;Lee, N.-E
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.434.2-434.2
    • /
    • 2014
  • We observe enhanced pH response of solution-gated field-effect transistors (SG-FET) having 1D-2D hybrid channel of vertical grown ZnO nanorods grown on CVD graphene (Gr). In recent years, SG-FET based on Gr has received a lot of attention for biochemical sensing applications, because Gr has outstanding properties such as high sensitivity, low detection limit, label-free electrical detection, and so on. However, low-defect CVD Gr has hardly pH responsive due to lack of hydroxyl group on Gr surface. On the other hand, ZnO, consists of stable wurtzite structure, has attracted much interest due to its unique properties and wide range of applications in optoelectronics, biosensors, medical sciences, etc. Especially, ZnO were easily grown as vertical nanorods by hydrothermal method and ZnO nanostructures have higher sensitivity to environments than planar structures due to plentiful hydroxyl group on their surface. We prepared for ZnO nanorods vertically grown on CVD Gr (ZnO nanorods/Gr hybrid channel) and to fabricate SG-FET subsequently. We have analyzed hybrid channel FETs showing transfer characteristics similar to that of pristine Gr FETs and charge neutrality point (CNP) shifts along proton concentration in solution, which can determine pH level of solution. Hybrid channel SG-FET sensors led to increase in pH sensitivity up to 500%, compared to pristine Gr SG-FET sensors. We confirmed plentiful hydroxyl groups on ZnO nanorod surface interact with protons in solution, which causes shifts of CNP. The morphology and electrical characteristics of hybrid channel SG-FET were characterized by FE-SEM and semiconductor parameter analyzer, respectively. Sensitivity and sensing mechanism of ZnO nanorods/Gr hybrid channel FET will be discussed in detail.

  • PDF

Gas Sensing Properties of Nanocrystalline ITO Thick Films with Different Particle Sizes (입자 크기에 따른 ITO 후막 센서의 가스 감지 특성)

  • Shin, D.W.;Lee, S.T.;Jun, H.K.;Lee, D.D.;Lim, J.O.;Huh, J.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.106-110
    • /
    • 2003
  • Nano-sized powders of Indium Tin Oxide(ITO) were synthesized by a coprecipitation method. In order to investigate the gas sensing characteristics in the nanocrystalline ITO thick films with various particle sizes, ITO powders with the average particle diameter of 15, 30, and 70 nm respectively were synthesized. And the sensitivity of ITO thick films was measured upon exposure to a target gas($C_2$$H_{5}$ /OH) and some other Volatile Organic Compounds(VOCs), such as, toluene, methanol, benzene, chloroform. As a result, ITO thick films had high sensitivity for ethanol and higher sensitivity with smaller particle size.

H2S Gas Sensing Properties of SnO2:CuO Thin Film Sensors Prepared by E-beam Evaporation

  • Sohn, Jae-Cheon;Kim, Sung-Eun;Kim, Zee-Won;Yu, Yun-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.135-139
    • /
    • 2009
  • $H_2S$ micro-gas sensors have been developed employing $SnO_2$:CuO composite thin films. The films were prepared by e-beam evaporation of Sn and Cu metals on silicon substrates, followed by oxidation at high temperatures. Results of various studies, such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) reveal that $SnO_2$ and CuO are mutually non-reactive. The CuO grains, which in turn reside in the inter-granular regions of $SnO_2$, inhibit grain growth of $SnO_2$ as well as forming a network of p-n junctions. The film showed more than a 90% relative resistance change when exposed to $H_2S$ gas at 1 ppm in air at an operating temperature of $350^{\circ}C$ and had a short response time of 8 sec.

A Review of EOS Thermal Control Logic for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Youn H.S.;Paik H.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.452-455
    • /
    • 2004
  • MSC (Multi-Spectral Camera) system is a remote sensing instrument to obtain high resolution ground image. EOS (Electro-Optic System) for MSC mainly consists of PMA (Primary Mirror Assembly), SMA (Secondary Mirror Assembly), HSTS (High Stability Telescope Structure) and DFPA (Detector Focal Plane Assembly). High performance of EOS makes it possible for MSC system to provide high resolution and high quality ground images. Temperature of the EOS needs to be controlled to be in a specific range in order not to have any thermal distortion which can cause performance degradation. It is controlled by full redundant CPU based electronics. The validity of thermistor readings can be checked because a few thermistors are installed on each control point on EOS. Various kinds of thermal control logics are used to prevent 'Single Point Failure'. Control logic has a few set of database in order not to be corrupted by SEU (Single Event Upset). Even though the thermal control logic is working automatically, it can also be monitored and controlled by ground-station operator. In this paper, various ways of thermal control logic for EOS in MSC will be presented, which include thermal control mode and logic, redundancy design and status monitoring and reporting scheme.

  • PDF