• Title/Summary/Keyword: H-beam

Search Result 1,988, Processing Time 0.035 seconds

Development of Fiber-end-cap Fabrication Equipment (대구경 광섬유 엔드캡 제작장비 개발)

  • Lee, Sung Hun;Hwang, Soon Hwi;Kim, Tae Kyun;Yang, Whan Seok;Yoon, Yeong Gap;Kim, Seon Ju
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.49-54
    • /
    • 2021
  • In this paper, we design and construct the equipment to manufacture large-diameter optical fiber end caps, which are the core parts of high-power fiber lasers, and we fabricate large-diameter optical fiber end caps using the home-made equipment. This equipment consists of a CO2 laser as a fusion-splice heat source, a precision stage assembly for transferring the position of a large-diameter optical fiber and an end cap, and a vision system used for alignment when the fusion splice is interlocked with the stage assembly. The output of the laser source is interlocked with the stage assembly to control the output, and the equipment is manufactured to align the polarization axis of the large-diameter polarization-maintaining optical fiber with the vision system. Optical fiber end caps were manufactured by laser fusion splicing of a large-diameter polarization-maintaining optical fiber with a clad diameter of 400 ㎛ and an end cap of 10×5×2 ㎣ (W×D×H) using home-made equipment. Signal-light insertion loss, polarization extinction ratio, and beam quality M2 of the fabricated large-diameter optical fiber end caps were measured to be 0.6%, 16.7 dB, and 1.21, respectively.

Automated Finite Element Analyses for Structural Integrated Systems (통합 구조 시스템의 유한요소해석 자동화)

  • Chongyul Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • An automated dynamic structural analysis module stands as a crucial element within a structural integrated mitigation system. This module must deliver prompt real-time responses to enable timely actions, such as evacuation or warnings, in response to the severity posed by the structural system. The finite element method, a widely adopted approximate structural analysis approach globally, owes its popularity in part to its user-friendly nature. However, the computational efficiency and accuracy of results depend on the user-provided finite element mesh, with the number of elements and their quality playing pivotal roles. This paper introduces a computationally efficient adaptive mesh generation scheme that optimally combines the h-method of node movement and the r-method of element division for mesh refinement. Adaptive mesh generation schemes automatically create finite element meshes, and in this case, representative strain values for a given mesh are employed for error estimates. When applied to dynamic problems analyzed in the time domain, meshes need to be modified at each time step, considering a few hundred or thousand steps. The algorithm's specifics are demonstrated through a standard cantilever beam example subjected to a concentrated load at the free end. Additionally, a portal frame example showcases the generation of various robust meshes. These examples illustrate the adaptive algorithm's capability to produce robust meshes, ensuring reasonable accuracy and efficient computing time. Moreover, the study highlights the potential for the scheme's effective application in complex structural dynamic problems, such as those subjected to seismic or erratic wind loads. It also emphasizes its suitability for general nonlinear analysis problems, establishing the versatility and reliability of the proposed adaptive mesh generation scheme.

Enhancement of Exchange Coupling Field and Thermal Stability by an Ultra-thin Mn Inserted layer on NiFe/[FeMn/Mn]80/NiFe Multilayers (NiFe/[FeMn/Mn]80/NiFe 다층박막에서 극-초박막 Mn 삽입에 의한 교환결합세기와 열적 안정성 향상)

  • Kim, Bo-Kyung;Lee, Jin-Yong;Ham, Sang-Hee;Lee, Sang-Suk;Hwang, Do-Guwn
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.2
    • /
    • pp.53-58
    • /
    • 2003
  • Annealing effects of exchange bias fields ($H_{2ex}$(top), $H_{lex}$ (bottom)) on composite type NiFe/[FeMn/Mn]$_{80}$/NiFe multilayers have been studied. Three samples with ultra-thin Mn inserted layers on glass/Ta(50 $\AA$)/NiFe(150 $\AA$)/[F $e_{53}$M $n_{47}$(1.25 $\AA$)/Mn(0 $\AA$, 0.11 $\AA$, 0.3 $\AA$)]$_{80}$/NiFe(90 $\AA$)/Ta(50 $\AA$) were prepared by ion beam sputtering. The average x-ray diffraction peak ratios NiFe(111) of FeMn (111) fcc textures for the Mn inserted total thicknesses of 0 $\AA$, 9 $\AA$, and 24 $\AA$ were about 0.65, 0.90, and 1.5, respectively. For the sample without Mn inserted layer, the $H_{2ex}$ of 260 Oe up to 300 $^{\circ}C$ disappeared at 350 $^{\circ}C$. For two multilayer samples with ultra-thin Mn layers of 0.11 $\AA$ and 0.3 $\AA$, the $H_{2exs}$ of 310 Oe and 180 Oe up to 300 $^{\circ}C$ endured of 215 Oe and 180 Oe at 350 $^{\circ}C$, respectively. The $H_{ex}$ (bottom)s of three samples decreased from 100 Oe to 70 Oe up to 250 $^{\circ}C$, while these values increased beyond 300 $^{\circ}C$. This observation can be attributed to less diffusive path of Mn atoms in bottom NiFe than top NiFe layer. The top and bottom coercive fields slightly varied about 5 Oe∼10 Oe. From these results, we could obtain the enhancement of exchange coupling intensity and thermal stability by an ultra-thin Mn inserted layer on NiFe/[FeMn/Mn]$_{80}$/NiFe Multilayers.

Trend in Research and Application of Hard Carbon-based Thin Films (탄소계 경질 박막의 연구 및 산업 적용 동향)

  • Lee, Gyeong-Hwang;Park, Jong-Won;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF

Flexural Test of H-Shape Members Fabricated of High-Strength Steel with Considering Local Buckling (국부좌굴을 고려한 고강도 조립 H형강 부재의 휨성능 실험)

  • Lee, Cheol-Ho;Han, Kyu-Hong;Park, Chang-Hee;Kim, Jin-Ho;Lee, Seung-Eun;Ha, Tae-Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.417-428
    • /
    • 2011
  • Depending on the plastic deformation capacity required, structural steel design under the current codes can be classified into three categories: elastic, plastic, and seismic design. Most of the current steel codes explicitly forbid the use of a steel material with a yield strength higher than 450 MPa in the plastic design because of the concerns about its low plastic deformation capacity as well as the lack of test data on local and lateral torsional buckling behavior. In this study, flexural tests on full-scale H-shape members built with SM490A (ordinary steel or benchmark material) and HSB800 (high-strength steel) were carried out. The primary objective was to investigate the appropriateness of extrapolating the local buckling criterion of the current codes, which was originally developed for normal-strength steel, to the case of high-strength steel. All the SM490A specimens performed consistently with the current code criteria and exhibited sufficient strength and ductility. The performance of the HSB800 specimens was also very satisfactory from the strength perspective; even the specimens with a noncompact and slender flange developed the plastic moment capacity. The HSB800 specimens, however, showed an inferior plastic rotation capacity due to the premature tensile fracture of the beam bottom flange beneath the vertical stiffener at the loading point. The plastic rotation capacity that was achieved was less than 3 (or the minimum level required for a plastic design). Although the test results in this study indicate that the extrapolation of the current flange local-buckling criterion to the case of high-strength steel is conservative from the elastic design perspective, further testing together with an associated analytical study is required to identify the causes of the tensile fracture and to establish a flange slenderness criterion that is more appropriate for high-strength steel.

Physical Characteristics Comparison of Virtual Wedge Device with Physical Wedge (가상쐐기와 기존쐐기의 물리적 특성 비교)

  • Choi Dong-Rak;Shin Kyung Hwan;Lee Kyu Chan;Kim Dae Yong;Ahn Yong Chan;Lim Do Hoon;Kim Moon Kyun;Huh Seung Jae
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.78-83
    • /
    • 1999
  • Purpose : We have compared the characteristics of Siemens virtual wedge device with physical wedges for clinical application. Materials and Methods : We investigated the characteristics of virtual and physical wedges for various wedge angles (15, 30, 45, and 60$^{\circ}$) using 6- and 15MV photon beams. Wedge factors were measured in water using an ion chamber for various field sizes and depths. In case of virtual wedge device, as upper jaw moves during irradiation, wedge angles were estimated by accumulated doses. These measurements were performed at off-axis points perpendicular to the beam central axis in water for a 15cm${\times}$20cm radiation field size at the depth of loom. Surface doses without and with virtual or physical wedges were measured using a parallel plate ion chamber at surface. Field size was 15cm H20cm and a polystyrene phantom was used. Results : For various field sizes, virtual and physical wedge factors were changed by maximum 2.1% and 3.9%) , respectively. For various depths, virtual and physical wedge factors were changed by maximum 1.9% and 2.9%, respectively. No major difference was found between the virtual and physical wedge angles and the difference was within 0.5$^{\circ}$ . Suface dose with physical wedge was reduced by maximum 20% (x-ray beam :6 MV, wedge angle:45$^{\circ}$, 550: 80 cm) relative to one with virtual wedge or without wedge. Conclusions : Comparison of the characteristics of Siemens virtual wedge device with physical wedges was performed. Depth dependence of virtual wedge factor was smaller than that of physical wedge factor. Virtual and physical wedge factors were nearly independent of field sizes. The accuracy of virtual and physical wedge angles was excellent. Surface dose was found to be reduced using physical wedge.

  • PDF

Seasonal Variation in Species Composition of Fishes in the Eelgrass Beds in Angel Bay of the Southern Coast of Korea (남해 안골만 잘피밭 어류 종조성의 계절변동)

  • LEE Tae Won;MOON Hyung Tae;HWANG Hak Bin;HUH Sung-Hoi;KIM Dae Ji
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.439-477
    • /
    • 2000
  • Seasonal variation in species composition of fishes in the eelgrass bed in Angel Bay of the southern coast of Korea was determined using monthly samples by a beam trawl from April 1998 to March 1999, A total of 39 species, 2,065 individuals and 8,930 g of fishes were collected during the study period. The fish were composed of the small-sized resident species and the juveniles of Leiognathus nuchalis, Pholis nebulosa, Spgnathus schlegeli and Sebastes ineinis predominated in abundance, accounting for $60{\%}$ of total number of individuals. The number of species and biomass were low from December to March when the water temperature was low, The biomass increased by the catch of a large number of L. nuchalis and S. inemis in April and May when the eelgrass grew fast. The fish numbers decreased in June and July when the adults of the resident species declined after the spawning. A large number of juveniles which had released in spring occurred in August. The biomass of fish decreased from September, and a few number of fish were collected in winter. Species were grouped into four by cluster analysis: the warm season group including P. nebulosa, S. schlegeli and L. nuchalis, the cold season group including Chaenogobius heptaoanthus and Platycephalus indieus, the group of fish species occurred during the growing season of eelgrass such as P. couoides, S. inermis and P. perooides, and the group of fish species occurred during decaying season of eelgrass such as S. cirrhifer and H. coronatus. Principal component analysis indicated that seasonal variation in species composition was determined by the water temperature and standing crops of eelgrass.

  • PDF

Improvement of Radiosynthesis Yield of [11C]acetate ([11C]아세트산의 방사화학적 수율 증가를 위한 연구)

  • Park, Jun Young;Son, Jeongmin
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.74-78
    • /
    • 2018
  • Purpose $[^{11}C]$acetate has been proved useful in detecting the myocardial oxygen metabolism and various malignancies including prostate cancer, hepatocellular carcinoma, renal cell carcinoma and brain tumors. The purpose of study was to improve the radiosynthesis yield of $[^{11}C]$acetate on a automated radiosynthesis module. Materials and Methods $[^{11}C]$acetate was prepared by carboxylation of grignard reagent, methylmagnesium chloride, with $[^{11}C]$$CO_2$ gas, followed by hydrolysis with 1 mM acetic acid and purification using solid phase extraction cartridges. The effect of the reaction temperature ($0^{\circ}C$, $10^{\circ}C$, $-55^{\circ}C$) and cyclotron beam time (10 min, 15 min, 20 min, 25 min) on the radiosynthesis yield were investigated in the $[^{11}C]$acetate labeling reaction. Results The maximum radiosynthesis yield was obtained at $-10^{\circ}C$ of reaction temperature. The radioactivities of $[^{11}C]$acetate acquired at $-10^{\circ}C$ reaction temperature was 2.4 times higher than those of $[^{11}C]$acetate acquired at $-55^{\circ}C$. Radiosynthesis yield of $[^{11}C]$acetate increased with increasing cyclotron beam time. Conclusion This study shows that radiosynthesis yield of $[^{11}C]$acetate highly dependent on reaction temperature. The best radiosynthesis yield was obtained in reaction of grignard reagent with $[^{11}C]$$CO_2$ at $-10^{\circ}C$. This radiolabeling conditions will be ideal for routine clinical application.

IGRINS Design and Performance Report

  • Park, Chan;Jaffe, Daniel T.;Yuk, In-Soo;Chun, Moo-Young;Pak, Soojong;Kim, Kang-Min;Pavel, Michael;Lee, Hanshin;Oh, Heeyoung;Jeong, Ueejeong;Sim, Chae Kyung;Lee, Hye-In;Le, Huynh Anh Nguyen;Strubhar, Joseph;Gully-Santiago, Michael;Oh, Jae Sok;Cha, Sang-Mok;Moon, Bongkon;Park, Kwijong;Brooks, Cynthia;Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyuong;Hill, Peter C.;Lee, Sungho;Barnes, Stuart;Yu, Young Sam;Kaplan, Kyle;Mace, Gregory;Kim, Hwihyun;Lee, Jae-Joon;Hwang, Narae;Kang, Wonseok;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.90-90
    • /
    • 2014
  • The Immersion Grating Infrared Spectrometer (IGRINS) is the first astronomical spectrograph that uses a silicon immersion grating as its dispersive element. IGRINS fully covers the H and K band atmospheric transmission windows in a single exposure. It is a compact high-resolution cross-dispersion spectrometer whose resolving power R is 40,000. An individual volume phase holographic grating serves as a secondary dispersing element for each of the H and K spectrograph arms. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is $1^{{\prime}{\prime}}{\times}15^{{\prime}{\prime}}$. IGRINS has a plate scale of 0.27" pixel-1 on a $2048{\times}2048$ pixel Teledyne Scientific & Imaging HAWAII-2RG detector with a SIDECAR ASIC cryogenic controller. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be 25mm, which permits the entire cryogenic system to be contained in a moderately sized ($0.96m{\times}0.6m{\times}0.38m$) rectangular Dewar. The fabrication and assembly of the optical and mechanical components were completed in 2013. From January to July of this year, we completed the system optical alignment and carried out commissioning observations on three runs to improve the efficiency of the instrument software and hardware. We describe the major design characteristics of the instrument including the system requirements and the technical strategy to meet them. We also present the instrumental performance test results derived from the commissioning runs at the McDonald Observatory.

  • PDF

Evaluation of Dose and Position Compensation of Parotid Gland Using CT On-rail System in Head-and-Neck Cancer (두경부 암환자 치료 시 CT On-rail System을 이용한 이하선의 위치 보정 및 선량 평가)

  • Jang, Hyeong-Jun;Im, Chung-Geun;Chun, Geum-Sung;Jeong, Il-Seon;Kim, Hoi-Nam
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • Purpose: The checking method of target and normal structure are used by MVCBCT, KVCBCT, CT On-rail System, Ultrasound in H&N cancer patient. In case of MVCT, the utilization of bone structure is valuable to check around tissue. But the utilization of soft tissue is not enough. The point of this paper is dose variation in movable parotid and changeable volume of H&N cancer patient of CT On-rail System. Materials and Methods: The object of H&N cancer patient is 5 in this hospital. The selected patient are scanned ARTISTE CT Vision (CT On-ral System) a triweekly. After CT scanning, tranfered coordinates are obtained by movable of parotid gland comparison with planning image. Checking for the changeable volume of parotid gland. A Obtained CT image are tranfered to the RTP System. So dose variation are checked by following changed volume. Results: The changes of target coordinate by the parotid gland movement are X: -0.4~0.4 cm, Y: -0.4~0.3 cm, Z: -0.3~0.3 cm. the volume of GTV is decreased to about 7.11%/week and then both parotid gland volume are shrinked about 4.81%/week (Lt), 2.91%/week (Rt). At the same time, each parotid gland are diminished in radiation dose as 3.66%/week (Lt), 2.01%/week. Conclusion: Images from CT on the rail System which are able to aquire the better quality images of soft tissue in Target area than MVCBCT. After replanning and dose redistribution by required images, It could gain not only the correction of the patient set-tup errors but exact dose distribution. Accordingly, the delivery of compensated dose, It makes that we could do Adaptive Targeting Radiotherapy and need Real Time Adaptive Targeting Radiotherapy by reduce beam delivary time.

  • PDF