Improvement of Radiosynthesis Yield of [11C]acetate

[11C]아세트산의 방사화학적 수율 증가를 위한 연구

  • Park, Jun Young (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Son, Jeongmin (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System)
  • 박준영 (연세의료원 세브란스병원 핵의학과) ;
  • 손정민 (연세의료원 세브란스병원 핵의학과)
  • Received : 2018.10.01
  • Accepted : 2018.10.11
  • Published : 2018.10.31

Abstract

Purpose $[^{11}C]$acetate has been proved useful in detecting the myocardial oxygen metabolism and various malignancies including prostate cancer, hepatocellular carcinoma, renal cell carcinoma and brain tumors. The purpose of study was to improve the radiosynthesis yield of $[^{11}C]$acetate on a automated radiosynthesis module. Materials and Methods $[^{11}C]$acetate was prepared by carboxylation of grignard reagent, methylmagnesium chloride, with $[^{11}C]$$CO_2$ gas, followed by hydrolysis with 1 mM acetic acid and purification using solid phase extraction cartridges. The effect of the reaction temperature ($0^{\circ}C$, $10^{\circ}C$, $-55^{\circ}C$) and cyclotron beam time (10 min, 15 min, 20 min, 25 min) on the radiosynthesis yield were investigated in the $[^{11}C]$acetate labeling reaction. Results The maximum radiosynthesis yield was obtained at $-10^{\circ}C$ of reaction temperature. The radioactivities of $[^{11}C]$acetate acquired at $-10^{\circ}C$ reaction temperature was 2.4 times higher than those of $[^{11}C]$acetate acquired at $-55^{\circ}C$. Radiosynthesis yield of $[^{11}C]$acetate increased with increasing cyclotron beam time. Conclusion This study shows that radiosynthesis yield of $[^{11}C]$acetate highly dependent on reaction temperature. The best radiosynthesis yield was obtained in reaction of grignard reagent with $[^{11}C]$$CO_2$ at $-10^{\circ}C$. This radiolabeling conditions will be ideal for routine clinical application.

본 연구는 그리냐르 시약과 $[^{11}C]$$CO_2$ 가스의 반응온도를 최적화하여 $[^{11}C]$아세트산의 방사화학적 수율을 향상시킬 수 있는 방법을 개발하고자 하였다. 본 연구에서는 $TRACERlab^{TM}$ $FX_{C-Pro}$ 자동합성장치에 기체포집 반응법과 고체상 추출 카트리지 분리정제법을 적용하여 $[^{11}C]$아세트산을 합성하였다. 그리냐르 시약으로 3.0 M $CH_3MgCl$를 사용하였으며, 표지반응 시 무수 tetrahydrofuran을 사용하여 0.5 M $CH_3MgCl$로 희석하여 사용하였다. 사이클로트론에서 생산된 $[^{11}C]$$CO_2$ 가스를 포집 후 반응용기에 담겨있는 그리냐르 시약에 불어넣을 때 반응용기를 액체질소로 냉각하여 $0^{\circ}C$, $-10^{\circ}C$, $-55^{\circ}C$가 각각 되게 한 후 표지반응을 진행하였다. 표지 반응 후 1 mM 아세트산 용액을 넣어 반응액을 희석한 후 고체상 추출 카트리지 IC-H와 IC-Ag를 차례로 통과시켜 불순물을 제거하고, 최종산물인 $[^{11}C]$아세트산은 SAX 카트리지에 통과시켜 흡착시킨 후 주사용수를 통과시켜 유기용매 및 불순물을 제거한 후 생리식염수로 용출하였다. 용출된 $[^{11}C]$ 아세트산은 $0.22-{\mu}m$ 멸균필터를 사용하여 멸균 후 HPLC로 방사화학적 순도를 측정하였다. 사이클로트론의 빔 전류를 $50{\mu}A$로 고정하고 빔 조사를 20분간 하여 생산된 $[^{11}C]$$CO_2$ 가스를 그리냐르 시약과 반응시킬 때 온도가 $0^{\circ}C$일 때 $15.2{\pm}1.6GBq$ (n=5)의 $[^{11}C]$아세트산이 합성되었고, 표지반응온도가 $-10^{\circ}C$일 때는 $18.7{\pm}2.1GBq$ (n=19)가 합성되었으며, $-55^{\circ}C$일 때는 $7.7{\pm}1.7GBq$ (n=19)가 합성되었다. 방사화학적 수율이 가장 높았던 $-10^{\circ}C$에서 빔 조사시간에 따른 $[^{11}C]$ 아세트산의 합성수율을 비교하였을 때 10분간 빔을 조사할 때보다 20분간 조사할 경우 약 1.9배 생산량이 증가하는 것을 확인할 수 있었다. 본 연구를 통해 $[^{11}C]$$CO_2$ 가스와 그리냐르 시약을 $-10^{\circ}C$에서 반응 할 경우 방사화학적 수율을 크게 개선할 수 있어 향후 임상에서 통상적으로 생산 시 유용한 표지조건으로 활용될 수 있을 것이라 기대된다.

Keywords

References

  1. Grassi I, Nanni C, Allegri V, Morigi JJ, Montini GC, Castellucci P, et al., The clinical use of PET with $^{11}C$-acetate. Am J Nucl Med Mol Imaging 2012;2:33-47.
  2. Choudhary, C., Weinert, B.T., Nishida, Y., Verdin, E., and Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 2014:15;536-550.
  3. Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab 2015;21:805-821. https://doi.org/10.1016/j.cmet.2015.05.014
  4. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv 2016;2:e1600200. https://doi.org/10.1126/sciadv.1600200
  5. Arakawa K, Kudo T, Ikawa M, Morikawa N, Kawai Y, Sahashi K, et al., Abnormal myocardial energy-production state in mitochondrial cardiomyopathy and acute response to L-arginine infusion. $^{11}C$-acetate kinetics revealed by positron emission tomography. Circ J 2010;74:2702-2711. https://doi.org/10.1253/circj.CJ-10-0044
  6. Naya M, Tamaki N. Imaging of myocardial oxidative metabolism in heart failure. Curr Cardiovasc Imaging Rep 2014;7:9244. https://doi.org/10.1007/s12410-013-9244-y
  7. Oyama N, Akino H, Suzuki Y, Kanamaru H, Sadato N, Yonekura Y, Okada K. The increased accumulation of [$^{18}F$]fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol 1999;29:623- 629. https://doi.org/10.1093/jjco/29.12.623
  8. Ho C, Yu S, Yeung D. $^{11}C$-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 2003;44:213-221.
  9. Yoshimoto M, Waki A, Yonekura Y, Sadato N, Murata T, Omata N, et al., Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 2001;28:117-122. https://doi.org/10.1016/S0969-8051(00)00195-5
  10. Vavere AL, Kridel SJ, Wheeler FB, Lewis JS. $^{11}C$-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med 2008;49:327-334. https://doi.org/10.2967/jnumed.107.046672
  11. Yoo MJ, Lee JD. Imaging of cancer metabolism using positron emission tomography. J Korean Med Assoc 2009;52:113-120. https://doi.org/10.5124/jkma.2009.52.2.113
  12. Roeda D, Dolle F, Crouzel C. An improvement of [$^{11}C$]acetate synthesis non-radioactive contaminants by irradiation-induced species emanating from the [$^{11}C$]carbon dioxide production target. Appl Radiat Isotopes 2002;57:857-860. https://doi.org/10.1016/S0969-8043(02)00224-5
  13. Davenport RJ, Dowsett K, Pike VW. A simple technique for the automated production of no-carrier-added [1-$^{11}C$]acetate. Appl Radiat Isotopes 1997;48:1117-1120. https://doi.org/10.1016/S0969-8043(97)00118-8
  14. Soloviev D, Tamburella C. Captive solvent [$^{11}C$]acetate synthesis in GMP conditions. Appl Radiat Isotopes 2006;64:995-1000 https://doi.org/10.1016/j.apradiso.2006.04.011
  15. Pike VW, Eakins MN, Allan RM, Selwyn AP. Preparation of [1-$^{11}C$]acetate-an agent for the study of myocardial metabolism by positron emission tomography. Int J Appl Radiat Isot 1982;33:505-512. https://doi.org/10.1016/0020-708X(82)90003-5