• Title/Summary/Keyword: H$_2$알고리듬

Search Result 53, Processing Time 0.022 seconds

Design and Development of VDL Mode-2 D8PSK Modem (VDL Mode-2 D8PSK 모뎀 설계 및 개발)

  • Gim, Jong-Man;Choi, Seoung-Duk;Eun, Chang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1085-1097
    • /
    • 2009
  • We present a structure and design method of the D8PSK modem compatible with the VDL mode-2 standard and performance test results of the developed modem. In VDL mode-2, the raised cosine filter is used only in the transmitter and a general low pass filter is used in the receiver. Consequently, we can not achieve ISI reduction but can have better spectrum characteristics. Although there is 1~2 dB performance degradation with an un-matched filter compared to that with a matched filter, it is more important to minimize adjacent channel interference in narrow band communications. The transmit signal is generated digitally to avoid the problems(I/Q imbalance and DC offset etc.) of analog modulators. In addition the digital down converter using digital IF sampling technique is adopted for the receiver. This paper contains the overall configuration, design method and simulation results based in part on the previously proposed structures and algorithms. It is confirmed that the modem transmits and receives messages successfully at a speed of max. 870 km/h over ranges of up to 310 km through the ground and in-flight communication tests.

Numerical Simulation of Normal Logging Measurements in the Proximity of Earth Surface (지표 부근에서의 노멀전기검층 수치 모델링)

  • Nam, Myung-Jin;Hwang, Se-Ho
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.259-267
    • /
    • 2010
  • Resistivity logging instruments were designed to measure electrical resistivity of formation, which can be directly interpreted to provide water-saturation profile. Short and long normal logging measurements are made under groundwater level. In some investigation sites, groundwater level reaches to a depth of a few meters. It has come to attention that the proximity of groundwater level might distort short and long normal logging readings, when the measurements are made near groundwater level, owing to the proximity of an insulating air. This study investigates the effects of the proximity of groundwater level (and also the proximity of earth surface) on the normal by simulating normal logging measurements near groundwater level. In the simulation, we consider all the details of real logging situation, i.e., the presence of wellbore, the tool mandrel with current and potential electrodes, and currentreturn and reference-potential electrodes. We also model the air to include the earth’'s surface in the simulation rather than the customary choice of imposing a boundary condition. To obtain apparent resistivity, we compute the voltage, i.e., potential difference between monitoring and reference electrodes. For the simulation, we use a twodimensional, goal-oriented and high-order self-adaptive hp finite element refinement strategy (h denotes the element size and p the polynomial order of approximation within each element) to obtain accurate simulation results. Numerical results indicate that distortion on the normal logging is greater when the reference potential electrode is closer to the borehole and distortions on long normal logging are larger than those on short normal logging.

Impact of Lambertian Cloud Top Pressure Error on Ozone Profile Retrieval Using OMI (램버시안 구름 모델의 운정기압 오차가 OMI 오존 프로파일 산출에 미치는 영향)

  • Nam, Hyeonshik;Kim, Jae Hawn;Shin, Daegeun;Baek, Kanghyun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.347-358
    • /
    • 2019
  • Lambertian cloud model (Lambertian Cloud Model) is the simplified cloud model which is used to effectively retrieve the vertical ozone distribution of the atmosphere where the clouds exist. By using the Lambertian cloud model, the optical characteristics of clouds required for radiative transfer simulation are parametrized by Optical Centroid Cloud Pressure (OCCP) and Effective Cloud Fraction (ECF), and the accuracy of each parameter greatly affects the radiation simulation accuracy. However, it is very difficult to generalize the vertical ozone error due to the OCCP error because it varies depending on the radiation environment and algorithm setting. In addition, it is also difficult to analyze the effect of OCCP error because it is mixed with other errors that occur in the vertical ozone calculation process. This study analyzed the ozone retrieval error due to OCCP error using two methods. First, we simulated the impact of OCCP error on ozone retrieval based on Optimal Estimation. Using LIDORT radiation model, the radiation error due to the OCCP error is calculated. In order to convert the radiation error to the ozone calculation error, the radiation error is assigned to the conversion equation of the optimal estimation method. The results show that when the OCCP error occurs by 100 hPa, the total ozone is overestimated by 2.7%. Second, a case analysis is carried out to find the ozone retrieval error due to OCCP error. For the case analysis, the ozone retrieval error is simulated assuming OCCP error and compared with the ozone error in the case of PROFOZ 2005-2006, an OMI ozone profile product. In order to define the ozone error in the case, we assumed an ideal assumption. Considering albedo, and the horizontal change of ozone for satisfying the assumption, the 49 cases are selected. As a result, 27 out of 49 cases(about 55%)showed a correlation of 0.5 or more. This result show that the error of OCCP has a significant influence on the accuracy of ozone profile calculation.