Browse > Article
http://dx.doi.org/10.7780/kjrs.2019.35.3.1

Impact of Lambertian Cloud Top Pressure Error on Ozone Profile Retrieval Using OMI  

Nam, Hyeonshik (Department of Atmospheric Science, Pusan National University)
Kim, Jae Hawn (Department of Atmospheric Science, Pusan National University)
Shin, Daegeun (Department of Atmospheric Science, Pusan National University)
Baek, Kanghyun (Department of Atmospheric Science, Pusan National University)
Publication Information
Korean Journal of Remote Sensing / v.35, no.3, 2019 , pp. 347-358 More about this Journal
Abstract
Lambertian cloud model (Lambertian Cloud Model) is the simplified cloud model which is used to effectively retrieve the vertical ozone distribution of the atmosphere where the clouds exist. By using the Lambertian cloud model, the optical characteristics of clouds required for radiative transfer simulation are parametrized by Optical Centroid Cloud Pressure (OCCP) and Effective Cloud Fraction (ECF), and the accuracy of each parameter greatly affects the radiation simulation accuracy. However, it is very difficult to generalize the vertical ozone error due to the OCCP error because it varies depending on the radiation environment and algorithm setting. In addition, it is also difficult to analyze the effect of OCCP error because it is mixed with other errors that occur in the vertical ozone calculation process. This study analyzed the ozone retrieval error due to OCCP error using two methods. First, we simulated the impact of OCCP error on ozone retrieval based on Optimal Estimation. Using LIDORT radiation model, the radiation error due to the OCCP error is calculated. In order to convert the radiation error to the ozone calculation error, the radiation error is assigned to the conversion equation of the optimal estimation method. The results show that when the OCCP error occurs by 100 hPa, the total ozone is overestimated by 2.7%. Second, a case analysis is carried out to find the ozone retrieval error due to OCCP error. For the case analysis, the ozone retrieval error is simulated assuming OCCP error and compared with the ozone error in the case of PROFOZ 2005-2006, an OMI ozone profile product. In order to define the ozone error in the case, we assumed an ideal assumption. Considering albedo, and the horizontal change of ozone for satisfying the assumption, the 49 cases are selected. As a result, 27 out of 49 cases(about 55%)showed a correlation of 0.5 or more. This result show that the error of OCCP has a significant influence on the accuracy of ozone profile calculation.
Keywords
Ozone; Ozone Profile; Radiative Transfer Model; Cloud Parameter;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Anderson, H. R., R. W. Atkinson, J. Peacock, L. Marston, K. Konstantinou, and World Health Organization, 2004. Meta-analysis of time-series studies and panel studies of particulate matter (PM) and ozone (O3): Report of a WHO task group, No. EUR/04/5046026, Copenhagen: WHO Regional Office for Europe.
2 Bak, J., J. H. Kim, X. Liu, K. Chance, and J. Kim, 2013a. Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra, Atmospheric Measurement Techniques, 6(2): 239-249.   DOI
3 Bak, J., X. Liu, J. C. Wei, L. L. Pan, K. Chance, and J. H. Kim, 2013b. Improvement of OMI ozone profile retrievals in the upper troposphere and lower stratosphere by the use of a tropopausebased ozone profile climatology, Atmospheric Measurement Techniques, 6(9): 2239-2254.   DOI
4 Bak, J., X. Liu, J. H. Kim, K. Chance, and D. Haffner, 2015. Validation of OMI total ozone retrievals from the SAO ozone profile algorithm and three operational algorithms with brewer measurements, Atmospheric Chemistry & Physics, 15(2): 667-683.   DOI
5 Bak, J., X. Liu, J. H. Kim, M. T. Deland, and K. Chance, 2016. Improvement of OMI ozone profile retrievals by simultaneously fitting polar mesospheric clouds, Atmospheric Measurement Techniques, 9(9): 4521-4531.   DOI
6 Bell, M. L., A. Zanobetti, and F. Dominici, 2014. Who is more affected by ozone pollution? A systematic review and meta-analysis, American Journal of Epidemiology, 180(1): 15-28.   DOI
7 Bhartia, P. K., R. D. McPeters, C. L. Mateer, L. E. Flynn, and C. Wellemeyer, 1996. Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique, Journal of Geophysical Research: Atmospheres, 101(D13): 18793-18806.   DOI
8 Bhartia, P. K. and C. W. Wellemeyer, 2002. TOMS-V8 total O3 algorithm, In: Bhartia, P. K., (Eds.), OMI Algorithm Theoretical Basis Document vol. II, NASA Goddard Space Flight Center, Greenbelt, MD, USA, pp. 15-32.
9 Brewer, A. W., 1973. A replacement for the Dobson spectrophotometer?, Pure and Applied Geophysics, 106(1): 919-927.   DOI
10 Bhartia, P. K., R. D. McPeters, L. E. Flynn, S. Taylor, N. A. Kramarova, S. Frith, B. Fisher, and M. DeLand, 2013. Solar backscatter UV (SBUV) total ozone and profile algorithm, Atmospheric Measurement Techniques, 6(10): 2533-2548.   DOI
11 Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985. Large losses of total ozone in antarctica reveal seasonal ClOx/NOx interaction, Nature, 315(6016): 207.   DOI
12 Chance, K., J. Burrows, D. Perner, and W. Schneider, 1997. Satellite measurements of atmospheric ozone profiles, including tropospheric ozone, from ultraviolet/visible measurements in the nadir geometry: A potential method to retrieve tropospheric ozone, Journal of Quantitative Spectroscopy and Radiative Transfer, 57(4): 467-476.   DOI
13 Choi, S. H., J. S. Bak, J. H. Kim, and K. H. Baek, 2015. OMI Analyses of the OMI Cloud Retrieval Data and Evaluation of Its Impact on Ozone Retrieval, Atmosphere, 25(1): 117-127 (in Korean with English abstract).   DOI
14 Dobson, G. M. B., 1931. A photoelectric spectrophotometer for measuring the amount of atmospheric ozone, Proceedings of the Physical Society, 43(3): 324.   DOI
15 Joiner, J., A. P. Vasilkov, P. Gupta, P. K. Bhartia, P. Veefkind, M. Sneep, J. De Haan, I. Polonsky, and R. Spurr, 2012. Fast simulators for satellite cloud optical centroid pressure retrievals; evaluation of OMI cloud retrievals, Atmospheric Measurement Techniques, 5(3): 529-545.   DOI
16 Liu, X., P. Bhartia, K. Chance, L. Froidevaux, R. Spurr, and T. Kurosu, 2010. Validation of ozone monitoring instrument (OMI) ozone profiles and stratospheric ozone columns with microwave limb sounder (MLS) measurements, Atmospheric Chemistry and Physics, 10(5): 2539-2549.   DOI
17 Levelt, P. F., E. Hilsenrath, G. W. Leppelmeier, O. van den, H. J. Gijsbertus, P. K. Bhartia, J. Tamminen, J. F. de Haan, and J. P. Veefkind, 2006. Science objectives of the ozone monitoring instrument, IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1199-1208.   DOI
18 Levelt, P. F., J. Joiner, J. Tamminen, J. P. Veefkind, P. K. Bhartia, D. C. Stein Zweers, N. D. Bryan, D. G. Streets, H. Eskes, and C. McLinden, 2018. The ozone monitoring instrument: Overview of 14 years in space, Atmospheric Chemistry and Physics, 18(8): 5699-5745.   DOI
19 Lippmann, M., 1989. Health effects of ozone a critical review, Japca, 39(5): 672-695.   DOI
20 Liu, X., K. Chance, C. E. Sioris, R. J. D. Spurr, T. P. Kurosu, R. V. Martin, and M. J. Newchurch, 2005. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation, Journal of Geophysical Research: Atmospheres, 110(D20): D20307.   DOI
21 Liu, X., P. Bhartia, K. Chance, R. Spurr, and T. Kurosu, 2010. Ozone profile retrievals from the ozone monitoring instrument, Atmospheric Chemistry and Physics, 10(5): 2521-2537.   DOI
22 Spurr, R. J. D., 2008. LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems, In: Kokhanovsky, A. A. (Eds.), Light Scattering Reviews 3, Springer, Berlin, Heidelberg, Germany, pp. 229-275.
23 Loyola, D. G., S. Gimeno Garcia, R. Lutz, A. Argyrouli, F. Romahn, R. Spurr, M. Pedergnana, A. Doicu, V. Molina Garcia, and O. Schussler, 2018. The operational cloud retrieval algorithms from TROPOMI on board sentinel-5 precursor, Atmospheric Measurement Techniques, 11(1): 409-427.   DOI
24 Pittman, J. V., L. L. Pan, J. C. Wei, F. W. Irion, X. Liu, E. S. Maddy, C. D. Barnet, K. Chance, and R. S. Gao, 2009. Evaluation of AIRS, IASI, and OMI ozone profile retrievals in the extratropical tropopause region using in situ aircraft measurements, Journal of Geophysical Research: Atmospheres, 114(D24): D24109.   DOI
25 Rodgers, C. D., 2000. Inverse methods for atmospheric sounding: Theory and practice, World scientific, River Edge, NJ, USA.
26 Spurr, R. J. D., 2006. VLIDORT: A linearized pseudospherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media, Journal of Quantitative Spectroscopy and Radiative Transfer, 102(2): 316-342.   DOI
27 Stammes, P., M. Sneep, J. F. De Haan, J. P. Veefkind, P. Wang, and P. F. Levelt, 2008. Effective cloud fractions from the ozone monitoring instrument: Theoretical framework and validation, Journal of Geophysical Research Atmospheres, 113(D16): D16S38.
28 van Diedenhoven, B., O. P. Hasekamp, and J. Landgraf, 2008. Effects of clouds on ozone profile retrievals from satellite measurements in the ultraviolet, Journal of Geophysical Research Atmospheres, 113(D15): D15311.   DOI