• 제목/요약/키워드: Gyroscope

검색결과 434건 처리시간 0.025초

Design and Vibration Analysis of Tri-axis Linear Vibratory MEMS Gyroscope

  • Seok, Seyeong;Moon, Sanghee;Kim, Kanghyun;Kim, Suhyeon;Yang, Seongjin;Lim, Geunbae
    • 센서학회지
    • /
    • 제26권4호
    • /
    • pp.235-238
    • /
    • 2017
  • In this study, the design of a tri-axis micromachined gyroscope is proposed and the vibration characteristic of the structure is analyzed. Tri-axis vibratory gyroscopes that utilize Coriolis effect are the most commonly used micromachined inertial sensors because of their advantages, such as low cost, small packaging size, and low power consumption. The proposed design is a single structure with four proof masses, which are coupled to their adjacent ones. The coupling springs of the proof masses orthogonally transfer the driving vibrational motion. The resonant frequencies of the gyroscope are analyzed by finite element method (FEM) simulation. The suspension beam spring design of proof masses limits the resonance frequencies of four modes, viz., drive mode, pitch, roll and yaw sensing mode in the range of 110 Hz near 21 kHz, 21173 Hz, 21239 Hz, 21244 Hz, and 21280 Hz, respectively. The unwanted modes are separated from the drive and sense modes by more than 700 Hz. Thereafter the drive and the sense mode vibrations are calculated and simulated to confirm the driving feasibility and estimate the sensitivity of the gyroscope. The cross-axis sensitivities caused by driving motion are 1.5 deg/s for both x- and y-axis, and 0.2 deg/s for z-axis.

단일모드 광섬유와 편광소멸기를 이용한 저가형 광섬유 자이로스코프에 관한 연구 (A Study on the Low-Cost Fiber-Optic Gyroscope Using the Single Mode Fiber and Depolarizer)

  • 장남영;함형재;송희영;최평석;은재정
    • 융합신호처리학회논문지
    • /
    • 제9권3호
    • /
    • pp.179-187
    • /
    • 2008
  • 본 논문에서는 저가의 광통신용 단일모드 광섬유와 편광소멸기를 이용한 비편광 광섬유 자이로스코프(D-FOG)를 설계/제작하여, 성능을 평가하였다. D-FOG의 위상오차를 줄이기 위해 사용광원의 전류 및 온도 안정화 회로를 제작하여 그 성능을 분석하였다. 제작된 전류 및 온도 안정화 회로의 전류 안정도는 $200{\mu}A$ 미만, 온도 안정도는 $0.0098^{\circ}C$로 양호한 성능을 보였다. 또한, 본 논문에서 제작된 D-FOG의 회전 각속도 측정 범위는 ${\pm}50^{\circ}/s$, Scale factor error는 2.8881%로 양호한 선형성을 보였으며, zero bias drift는 $19.49^{\circ}/h$의 bias 안정도를 보였다. 이는 고가인 고복굴절 편광 유지 광섬유를 이용해 제작된 기존의 FOG에 비해 높은 가격효율성을 갖는 저가의 FOG 제자의 가능성을 보여준다.

  • PDF

마이크로 자이로스코프를 위한 PD 제어기 설계 및 성능시험 (PD controller design for Micro Gyroscope and Its Performance Test)

  • 성운탁;송진우;이장규;강태삼
    • 한국항공우주학회지
    • /
    • 제33권3호
    • /
    • pp.47-56
    • /
    • 2005
  • 본 논문에서는 마이크로 자이로스코프를 위한 폐루프 제어기를 설계하여 그 성능이 개선됨을 보였다. 마이크로 자이로스코프는 높은 Q값을 가지는 시스템으로 그 특성상 공진 영역에서 동작하게 되는데, 개루프로 동작할 경우 선형성, 대역폭 등의 성능에 제약이 있게 된다. 폐루프 제어기는 개루프 동작시의 이러한 제약을 극복하고 성능을 개선할 수 있도록 한다. 본 연구에서는 PD 제어기를 적용하였으며 실험 대상이 된 마이크로 자이로스코프는 서울대에서 설계하고 Bosch foundry에서 제작한 SNU-Bosch MEMS 자이로스코프를 사용하였다. 실험을 통해 폐루프 제어기의 성능을 검증한 결과 대역폭은 35Hz에서 78Hz로, 선형성은 2.07%에서 0.504%로, 바이어스 안정도는 0.066deg/sec에서 0.043deg/sec로 개선되는 것을 확인할 수 있었다.

Reliability and Validity Study of Inertial Sensor-Based Application for Static Balance Measurement

  • Park, Young Jae;Jang, Ho Young;Kim, Kwon Hoi;Hwang, Dong Ki;Lee, Suk Min
    • Physical Therapy Rehabilitation Science
    • /
    • 제11권3호
    • /
    • pp.311-320
    • /
    • 2022
  • Objective: To investigate the reliability and validity of static balance measurements using an acceleration sensor and a gyroscope sensor in smart phone inertial sensors. Design: Equivalent control group pretest-posttest. Methods: Subjects were forty five healthy adults aged twenty to fifty-years-old who had no disease that could affect the experiment. After pre-test, all participants wore a waist band with smart phone, and conducted six static balance measurements on the force plate twice for 35 seconds each. To investigate the test-retest reliability of both smart phone inertial sensors, we compared the intra-correlation coefficient (ICC 3, 1) between primary and secondary measurements with the calculated root mean scale-total data. To determine the validity of the two sensors, it was measured simultaneously with force plate, and the comparision was done by Pearson's correlation. Results: The test-retest reliability showed excellent correlation for acceleration sensor, and it also showed excellent to good correlation for gyroscope sensor(p<0.05). The concurrent validity of smartphone inertial sensors showed a mostly poor to fair correlation for tandem-stance and one-leg-stance (p<0.05) and unacceptable correlation for the other postures (p>0.05). The gyroscope sensor showed a fair correlation for most of the RMS-Total data, and the other data also showed poor to fair correlation (p<0.05). Conclusions: The result indicates that both acceleration sensor and gyroscope sensor has good reliability, and that compared to force plate, acceleration sensor has unacceptable or poor correlation, and gyroscope sensor has mostly fair correlation.

미세가공 진동형 자이로스코프의 특성 감지 회로의 설계에 관한 연구 (Design of the Detection Circuitry for the Characteristics of Micromachined Vibrating Gyroscope)

  • 우영신;변광균;서일원;성만영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권10호
    • /
    • pp.687-692
    • /
    • 1999
  • A new technique to measure low level capacitance variations of the gyroscope is proposed and verified by computer simulation. It is based on the new CV(capacitance-voltage) converter circuit biased by dc current source and the peak detector without low pass filter. The CV converter biased by dc current source provides good signal-to-noise ratio and this setup of the detection circuitry without low pass filter makes it possible to provide short settling time, that is, higher speed of measurement and wide operation range if only a few parameters are adjusted. The key parameters that affect the performance of the detection circuitry are illustrated and computer simulation results are presented. The demonstrated detection circuitry shows linear response from 10 fF to 130 fF at 10 kHz and shows good linearity.

  • PDF

전자력을 이용한 평면 진동형 각속도계의 자속간섭의 영향 (The effect of magnetic flux interference on the planar vibratory gyroscope driven by electromagnetic force)

  • 홍승완;이상훈;임형택;김용권;이승기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1425-1427
    • /
    • 1995
  • The effect of the magnetic flux interference between the driving and detecting unit of the gyroscope by the electromagnetic force has been investigated quantitatively. The key parameter dictating the output characteristics of the gyroscope which is driven and detected using electromagnetic force is the mutual interference between the driving and detecting unit. Using the specially designed apparatus for positioning of the detecting unit, it is found that the vertical positioning of the detecting unit plays a significant role in minimizing the interference effect as evidenced by our experimental results.

  • PDF

A Compact and Fast Measurement System for the Detection of Small Capacitance

  • Youngshin Woo;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권1호
    • /
    • pp.16-21
    • /
    • 2001
  • A new technique to measure low level capacitance variations of a gyroscope is proposed. It is based on the improved CVC(capacitance to voltage converter) biased by a d.c. current source and the peak detector without any low pass filter. This setup of the measurement system makes it possible to provide higher speed of measurement and wide operation range. The d,c, drift of the conventional CVC and stray capacitances are automatically compensated. Key parameters that affect the performance of the measurement system are illustrated and computer simulation results are presented. The demonstrated measurement system for micromachined gyroscope applications shows a linearity of 0.99972 and a resolution of 0.67fF from 10 fF to 120 fF at 10 kHz.

  • PDF

Development of a single-structured MEMS gyro-accelerometer

  • Sung, Woon-Tahk;Lee, Jang-Gyu;Kang, Tae-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.592-595
    • /
    • 2004
  • This paper presents a study on the development of a multi-sensing inertial sensor with a single mechanical structure, which can be used both as a gyroscope and an accelerometer. The proposed MEMS gyro-accelerometer is designed to detect the angular rate and the acceleration at the same time using two separate detection circuits for one proof mass. In this study, the detection and signal processing circuit for an effective signal processing of different inertial measurements is designed, fabricated, and tested. The experimental results show that the performances of the gyro-accelerometer have resolutions of 1mg and 0.025deg/sec and nonlinearities of less than 0.5% for the accelerometer and the gyroscope, respectively, which are similar results with those of sensors with different structures and different detection circuits. The size of the sensor is reduced almost by 50% comparing with the sensors of separated proof mass.

  • PDF

마이크로 공진형 센서의 주파수 및 진폭 제어 (Frequency and Amplitude Control of Micro Resonant Sensors)

  • 박성수
    • 제어로봇시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.258-264
    • /
    • 2009
  • This paper presents two control algorithms for the frequency and amplitude of the resonator of a micro sensor. One algorithm excites the resonator at its a priori unknown resonant frequency, and the other algorithm alters the resonator dynamics to place the resonant frequency at a fixed frequency, chosen by the designer. Both algorithms maintain a specified amplitude of oscillations. The control system behavior is analyzed using an averaging method, and a quantitative criterion is provided for the selecting the control gain to achieve stability. Tracking and estimation accuracy of the natural frequency under the presence of measurement noise is also analyzed. The proposed control algorithms are applied to the MEMS dual-mass gyroscope without mechanical connecting beam between two proof-masses. Simulation results show the effectiveness of the proposed control algorithms which guarantee the proof-masses of the gyroscope to move in opposite directions with the same resonant frequency and oscillation amplitude.

Modeling and Analysis of Drift Error in a MSSG with Double Spherical Envelope Surfaces

  • Xin, Chaojun;Cai, Yuanwen;Ren, Yuan;Fan, Yahong
    • Journal of Magnetics
    • /
    • 제21권3호
    • /
    • pp.356-363
    • /
    • 2016
  • To improve the sensing accuracy of the newly developed magnetically suspended sensitive gyroscope (MSSG), it is necessary to analyze the causes of drift error. This paper build the models of disturbing torques generated by stator assembly errors based on the geometric construction of the MSSG with double spherical envelope surfaces, and further reveals the generation mechanism of the drift error. Then the drift error from a single stator magnetic pole is calculated quantitatively with the established model, and the key factors producing the drift error are further discussed. It is proposed that the main approaches in reducing the drift error are guaranteeing the rotor envelope surface to be an ideal spherical and improving the controlling precision of rotor displacement. The common problems associated in a gyroscope with a spherical rotor can be effectively resolved by the proposed method.