• Title/Summary/Keyword: Gut microbiota

Search Result 278, Processing Time 0.029 seconds

A Review of the Experimental Studies on the Modulatory Effect Herbal Medicine on Gut Microbiota (한약의 장내미생물 조절 효과에 대한 국내외 실험 연구 고찰)

  • Ahn, Hye Ri;Song, Ji Hyun;Lee, Hye Lim
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.43-58
    • /
    • 2020
  • Objectives The purpose of this study is to analyze the effect of various herbal medicin on gut microbiota. Methods Electronic searches were performed using NDSL, OASIS, KISS, KMBASE, K-portal, Pub med, Cochrane, CNKI. Results we analyzed 25 experimental studies on the effect of herbal medicine on microbiota. Diabetes, obesity, inflammatory bowel disease have been frequently studied in micobiota-related disease. The most common experimental animal model used in the studies C57BL/7 mouse. Among the studies wherein single herbal medication were used, Gynostemma pentaphyllum was most commonly studies, and different herbal medications were used in the studies wherein complex herbal medications were studied. Next generation sequencing was performed using Illumina MiSeq system, and gut microbiota analysis was performed using QIIME and Ribosomal Database Project (RDP). In most studies, the herbal medicines exerted regulatory effects on gut microbiota and improved the symptoms of the experimental groups. Conclusions This review provides basic data on the correlation between korean medicine and gut microbiota, as well as information for the development of korean medicine.

The gut microbiota: a key regulator of metabolic diseases

  • Yang, Jin-Young;Kweon, Mi-Na
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.536-541
    • /
    • 2016
  • The prevalence of obesity and type 2 diabetes, two closely linked metabolic disorders, is increasing worldwide. Over the past decade, the connection between these disorders and the microbiota of the gut has become a major focus of biomedical research, with recent studies demonstrating the fundamental role of intestinal microbiota in the regulation and pathogenesis of metabolic disorders. Because of the complexity of the microbiota community, however, the underlying molecular mechanisms by which the gut microbiota is associated with metabolic disorders remain poorly understood. In this review, we summarize recent studies that investigate the role of the microbiota in both human subjects and animal models of disease and discuss relevant therapeutic targets for future research.

Gut Microbiome Alterations and Functional Prediction in Chronic Spontaneous Urticaria Patients

  • Zhang, Xinyue;Zhang, Jun;Chu, Zhaowei;Shi, Linjing;Geng, Songmei;Guo, Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.747-755
    • /
    • 2021
  • The effects of the gut microbiome on both allergy and autoimmunity in dermatological diseases have been indicated in several recent studies. Chronic spontaneous urticaria (CSU) is a disease involving allergy and autoimmunity, and there is no report detailing the role of microbiota alterations in its development. This study was performed to identify the fecal microbial composition of CSU patients and investigate the different compositions and potential genetic functions on the fecal microbiota between CSU patients and normal controls. The gut microbiota of CSU patients and healthy individuals were obtained by 16s rRNA massive sequencing. Gut microbiota diversity and composition were compared, and bioinformatics analysis of the differences was performed. The gut microbiota composition results showed that Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia were dominant microbiota in CSU patients. The differential analysis showed that relative abundance of the Proteobacteria (p = 0.03), Bacilli (p = 0.04), Enterobacterales (p = 0.03), Enterobacteriaceae (p = 0.03) was significantly increased in CSU patients. In contrast, the relative abundance of Megamonas, Megasphaera, and Dialister (all p < 0.05) in these patients significantly decreased compared with healthy controls. The different microbiological compositions impacted normal gastrointestinal functions based on function prediction, resulting in abnormal pathways, including transport and metabolism. We found CSU patients exhibited gut microbiota dysbiosis compared with healthy controls. Our results indicated CSU is associated with gut microbiota dysbiosis and pointed out that the bacterial taxa increased in CSU patients, which might be involved in the pathogenesis of CSU. These results provided clues for future microbial-based therapies on CSU.

Simotang Alleviates the Gastrointestinal Side Effects of Chemotherapy by Altering Gut Microbiota

  • Deng, Lijing;Zhou, Xingyi;Lan, Zhifang;Tang, Kairui;Zhu, Xiaoxu;Mo, Xiaowei;Zhao, Zongyao;Zhao, Zhiqiang;Wu, Mansi
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.405-418
    • /
    • 2022
  • Simotang oral liquid (SMT) is a traditional Chinese medicine (TCM) consisting of four natural plants and is used to alleviate gastrointestinal side effects after chemotherapy and functional dyspepsia (FD). However, the mechanism by which SMT helps cure these gastrointestinal diseases is still unknown. Here, we discovered that SMT could alleviate gastrointestinal side effects after chemotherapy by altering gut microbiota. C57BL/6J mice were treated with cisplatin (DDP) and SMT, and biological samples were collected. Pathological changes in the small intestine were observed, and the intestinal injury score was assessed. The expression levels of the inflammatory factors IL-1β and IL-6 and the adhesive factors Occludin and ZO-1 in mouse blood or small intestine tissue were also detected. Moreover, the gut microbiota was analyzed by high-throughput sequencing of 16S rRNA amplicons. SMT was found to effectively reduce gastrointestinal mucositis after DDP injection, which lowered inflammation and tightened the intestinal epithelial cells. Gut microbiota analysis showed that the abundance of the anti-inflammatory microbiota was downregulated and that the inflammatory microbiota was upregulated in DDP-treated mice. SMT upregulated anti-inflammatory and anticancer microbiota abundance, while the inflammatory microbiota was downregulated. An antibiotic cocktail (ABX) was also used to delete mice gut microbiota to test the importance of gut microbiota, and we found that SMT could not alleviate gastrointestinal mucositis after DDP injection, showing that gut microbiota might be an important mediator of SMT treatment. Our study provides evidence that SMT might moderate gastrointestinal mucositis after chemotherapy by altering gut microbiota.

A Detrimental Role of Immunosuppressive Drug, Dexamethasone, During Clostridium difficile Infection in Association with a Gastrointestinal Microbial Shift

  • Kim, Hyeun Bum;Wang, Yuankai;Sun, Xingmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.567-571
    • /
    • 2016
  • We investigated the increased risk of Clostridium difficile infection (CDI) caused by the combined use of antibiotics and an immunosuppressive drug in a mouse model. Our data showed that an approximate return to pretreatment conditions of gut microbiota occurred within days after cessation of the antibiotic treatment, whereas the recovery of gut microbiota was delayed with the combined treatment of antibiotics and dexamethasone, leading to an increased severity of CDI. An alteration of gut microbiota is a key player in CDI. Therefore, our data implied that immunosuppressive drugs can increase the risk of CDI through the delayed recovery of altered gut microbiota.

Improvement of Inflammation, Diabetes, and Obesity by Forest Product-Derived Polysaccharides through the Human Intestinal Microbiota

  • Seong-woo MYEONG;Yong Ju LEE;Do Hyun KIM;Tae-Jong KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.358-380
    • /
    • 2023
  • The intestinal microbiota plays a crucial role in determining human health, rendering it a major focus of scientific investigation. Rather than eliminating all microbes, promoting the proliferation of beneficial microorganisms within the gut has been recognized as a more effective approach to improving health. Unfavorable conditions potentially alter gut microbial populations, including a reduction in microbial diversity. However, intentionally enhancing the abundance of beneficial gut microbes can restore a state of optimal health. Polysaccharides are widely acknowledged for their potential to improve the gut microbiota. This review emphasizes the findings of recent studies examining the effects of forest product-derived polysaccharides on enhancing the gut microbiota and alleviating inflammation, diabetes symptoms, and obesity. The findings of several studies reviewed in this paper strongly suggest that forest products serve as an excellent dietary source for improving the gut microbiota and potentially offer valuable dietary interventions for chronic health problems, such as inflammation, diabetes, and obesity.

Targeting the Gut Microbiome to Ameliorate Cardiovascular Diseases

  • Hwang, Soonjae;Park, Chan Oh;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.166-174
    • /
    • 2017
  • The bacterial cells located within the gastrointestinal tract (GIT) outnumber the host's cells by a factor of ten. These human digestive-tract microbes are referred to as the gut microbiota. During the last ten years, our understanding of gut microbiota composition and its relation with intra- and extra-intestinal diseases including risk factors of cardiovascular diseases (CVD) such as atherosclerosis and metabolic syndrome, have greatly increased. A question which frequently arises in the research community is whether one can modulate the gut microbial environment to 'control' risk factors in CVD. In this review, we summarized promising intervention methods, based on our current knowledge of intestinal microbiota in modulating CVD. Furthermore, we explore how gut microbiota can be therapeutically exploited by targeting their metabolic program to control pathologic factors of CVD.

Enhanced pig production: potential use of insect gut microbiota for pig production

  • Shin, Jiwon;Kim, Bo-Ra;Guevarra, Robin B.;Lee, Jun Hyung;Lee, Sun Hee;Kim, Young Hwa;Wattanaphansak, Suphot;Kang, Bit Na;Kim, Hyeun Bum
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.655-663
    • /
    • 2018
  • The insect gut microbiome is known to have important roles in host growth, development, digestion, and resistance against pathogens. In addition, the genetic diversity of the insect gut microbiota has recently been recognized as potential genetic resources for industrial bioprocessing. However, there is limited information regarding the insect gut microbiota to better help us understand their potential benefits for enhanced pig production. With the development of next-generation sequencing methods, whole genome sequence analysis has become possible beyond traditional culture-independent methods. This improvement makes it possible to identify and characterize bacteria that are not cultured and located in various environments including the gastrointestinal tract. Insect intestinal microorganisms are known to have an important role in host growth, digestion, and immunity. These gut microbiota have recently been recognized as potential genetic resources for livestock farming which is using the functions of living organisms to integrate them into animal science. The purpose of this literature review is to emphasize the necessity of research on insect gut microbiota and their applicability to pig production or bioindustry. In conclusion, bacterial metabolism of feed in the gut is often significant for the nutrition intake of animals, and the insect gut microbiome has potential to be used as feed additives for enhanced pig performance. The exploration of the structure and function of the insect gut microbiota needs further investigation for their potential use in the swine industry particularly for the improvement of growth performance and overall health status of pigs.

Comparison of Fecal Microbial Communities between White and Black Pigs

  • Guevarra, Robin B.;Kim, Jungman;Nguyen, Son G.;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.4
    • /
    • pp.369-375
    • /
    • 2015
  • Meat from black pigs (BP) is in high demand compared with that from modern white pig (WP) breeds such as Landrace pigs owing to its high quality. However, the growth rate of black pigs is slower than that of white pig breeds. We investigated differences in the fecal microbial composition between white and black pigs to explore whether these breeds differed in the composition of their gut microbial communities. The swine gut microbiota was investigated using Illumina's MiSeq-based sequencing technology by targeting the V4 region of the 16S rRNA gene. Our results showed that the composition of the gut microbiota was significantly different between the two pig breeds. While the composition of the WP microbiota shifted according to the growth stage, fewer shifts in composition were observed for the BP gut microbiota. In addition, the WP gut microbiota showed a higher Firmicutes/Bacteroidetes ratio compared with that of BP. A high ratio between these phyla was previously reported as an obesity-linked microbiota composition. Moreover, the WP microbiota contained a significantly higher abundance of cellulolytic bacteria, suggesting a possibility of higher fiber digestion efficiency in WP compared to BP. These findings may be important factors affecting growth performance and energy-harvesting capacities in pigs. Our findings of differences in the gut microbiota composition between the two breeds may provide new leads to understand growth rate variation across pig breeds.

Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota

  • Oh, Ju Kyoung;Vasquez, Robie;Kim, Sang Hoon;Hwang, In-Chan;Song, Ji Hoon;Park, Jae Hong;Kim, In Ho;Kang, Dae-Kyung
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1142-1158
    • /
    • 2021
  • Short-chain fatty acids (SCFAs) are metabolic products produced during the microbial fermentation of non-digestible fibers and play an important role in metabolic homeostasis and overall gut health. In this study, we investigated the effects of supplementation with multispecies probiotics (MSPs) containing Bacillus amyloliquefaciens, Limosilactobacillus reuteri, and Levilactobacillus brevis on the gut microbiota, and fecal SCFAs and lactate levels of weaned pigs. A total of 38 pigs weaned at 4 weeks of age were fed either a basal diet or a diet supplemented with MSPs for 6 weeks. MSP administration significantly increased the fecal concentrations of lactate (2.3-fold; p < 0.01), acetate (1.8-fold; p < 0.05), and formate (1.4-fold; p < 0.05). Moreover, MSP supplementation altered the gut microbiota of the pigs by significantly increasing the population of potentially beneficial bacteria such as Olsenella, Catonella, Catenibacterium, Acidaminococcus, and Ruminococcaceae. MSP supplementation also decreased the abundance of pathogenic bacteria such as Escherichia and Chlamydia. The modulation of the gut microbiota was observed to be strongly correlated with the changes in fecal SCFAs and lactate levels. Furthermore, we found changes in the functional pathways present within the gut, which supports our findings that MSP modulates the gut microbiota and SCFAs levels in pigs. The results support the potential use of MSPs to improve the gut health of animals by modulating SCFAs production.