Browse > Article
http://dx.doi.org/10.5483/BMBRep.2016.49.10.144

The gut microbiota: a key regulator of metabolic diseases  

Yang, Jin-Young (Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center)
Kweon, Mi-Na (Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center)
Publication Information
BMB Reports / v.49, no.10, 2016 , pp. 536-541 More about this Journal
Abstract
The prevalence of obesity and type 2 diabetes, two closely linked metabolic disorders, is increasing worldwide. Over the past decade, the connection between these disorders and the microbiota of the gut has become a major focus of biomedical research, with recent studies demonstrating the fundamental role of intestinal microbiota in the regulation and pathogenesis of metabolic disorders. Because of the complexity of the microbiota community, however, the underlying molecular mechanisms by which the gut microbiota is associated with metabolic disorders remain poorly understood. In this review, we summarize recent studies that investigate the role of the microbiota in both human subjects and animal models of disease and discuss relevant therapeutic targets for future research.
Keywords
Gut microbiota; Metabolic disorder; Obesity; Short-chain fatty acids; Type 2 diabetes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cani PD, Bibiloni R, Knauf C et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470-1481   DOI
2 Samuel BS, Shaito A, Motoike T et al (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 105, 16767-16772   DOI
3 Belkaid Y and Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157, 121-141   DOI
4 Sonnenburg JL and Backhed F (2016) Diet-microbiota interactions as moderators of human metabolism. Nature 535, 56-64   DOI
5 Tremaroli V and Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489, 242-249   DOI
6 Guarner F and Malagelada JR (2003) Gut flora in health and disease. Lancet 361, 512-519   DOI
7 Kamada N, Kim YG, Sham HP et al (2012) Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325-1329   DOI
8 Cho I, Yamanishi S, Cox L et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621-626   DOI
9 Cebra JJ (1999) Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69, 1046S-1051S
10 Caesar R, Reigstad CS, Backhed HK et al (2012) Gutderived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 61, 1701-1707   DOI
11 Ivanov, II, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485-498   DOI
12 Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. Nature 486, 207-214   DOI
13 Furusawa Y, Obata Y, Fukuda S et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446-450   DOI
14 Sayin SI, Wahlstrom A, Felin J et al (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17, 225-235   DOI
15 Swann JR, Want EJ, Geier FM et al (2011) Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc Natl Acad Sci U S A 108 Suppl 1, 4523-4530   DOI
16 Degirolamo C, Rainaldi S, Bovenga F, Murzilli S and Moschetta A (2014) Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep 7, 12-18   DOI
17 Kawamata Y, Fujii R, Hosoya M et al (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278, 9435-9440   DOI
18 Yang JY, Lee YS, Kim Y et al (2016) Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol [Epub ahead of print]
19 Sato H, Genet C, Strehle A et al (2007) Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem Biophys Res Commun 362, 793-798   DOI
20 Tsuboyama-Kasaoka N, Shozawa C, Sano K et al (2006) Taurine (2-aminoethanesulfonic acid) deficiency creates a vicious circle promoting obesity. Endocrinology 147, 3276-3284   DOI
21 Drucker DJ and Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696-1705   DOI
22 Osborn O and Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18, 363-374   DOI
23 Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD and Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102, 11070-11075   DOI
24 Ley RE, Turnbaugh PJ, Klein S and Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022-1023   DOI
25 Furet JP, Kong LC, Tap J et al (2010) Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59, 3049-3057   DOI
26 Schwiertz A, Taras D, Schafer K et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190-195   DOI
27 Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ and Lobley GE (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73, 1073-1078   DOI
28 Duncan SH, Lobley GE, Holtrop G et al (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes 32, 1720-1724   DOI
29 Backhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101, 15718-15723   DOI
30 Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL and Ferrante AW, Jr. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112, 1796-1808   DOI
31 Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD and Backhed F (2015) Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 22, 658-668   DOI
32 Feuerer M, Herrero L, Cipolletta D et al (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15, 930-939   DOI
33 Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214   DOI
34 DeWeerdt S (2014) Microbiome: A complicated relationship status. Nature 508, S61-63   DOI
35 David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559-563   DOI
36 Nishimura S, Manabe I, Nagasaki M et al (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15, 914-920   DOI
37 Smith PM, Howitt MR, Panikov N et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569-573   DOI
38 Arpaia N, Campbell C, Fan X et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451-455   DOI
39 Belzer C and de Vos WM (2012) Microbes inside--from diversity to function: the case of Akkermansia. ISME J 6, 1449-1458   DOI
40 Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ and Kaplan LM (2013) Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 5, 178ra14   DOI
41 Van den Abbeele P, Gerard P, Rabot S et al (2011) Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environ Microbiol 13, 2667-2680   DOI
42 Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105-108   DOI
43 Muegge BD, Kuczynski J, Knights D et al (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970-974   DOI
44 Walker AW, Ince J, Duncan SH et al (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5, 220-230   DOI
45 De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107, 14691-14696   DOI
46 Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541-546   DOI
47 Santacruz A, Collado MC, Garcia-Valdes L et al (2010) Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 104, 83-92   DOI
48 Cotillard A, Kennedy SP, Kong LC et al (2013) Dietary intervention impact on gut microbial gene richness. Nature 500, 585-588   DOI
49 Gao Z, Yin J, Zhang J et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509-1517   DOI
50 Perry RJ, Peng L, Barry NA et al (2016) Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534, 213-217   DOI
51 Ge H, Li X, Weiszmann J et al (2008) Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149, 4519-4526   DOI
52 Shin NR, Lee JC, Lee HY et al (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727-735   DOI
53 Chevalier C, Stojanovic O, Colin DJ et al (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360-1374   DOI
54 Gauffin Cano P, Santacruz A, Moya A and Sanz Y (2012) Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS One 7, e41079   DOI
55 Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59-65   DOI
56 Donohoe DR, Garge N, Zhang X et al (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13, 517-526   DOI
57 De Vadder F, Kovatcheva-Datchary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84-96   DOI
58 Salonen A, Lahti L, Salojarvi J et al (2014) Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J 8, 2218-2230   DOI
59 Thomas C, Pellicciari R, Pruzanski M, Auwerx J and Schoonjans K (2008) Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 7, 678-693   DOI
60 Midtvedt T (1974) Microbial bile acid transformation. Am J Clin Nutr 27, 1341-1347
61 Ridlon JM, Kang DJ and Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47, 241-259   DOI
62 Kobayashi M, Ikegami H, Fujisawa T et al (2007) Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes 56, 239-247   DOI