• Title/Summary/Keyword: Gun Speed

Search Result 431, Processing Time 0.021 seconds

High speed deposition technique of YSZ film for the superconducting tape (고온초전도테이프 제작을 위한 YSZ 박막의 고속증착방법)

  • Kim Ho-Sup;Shi Dongqui;Chung Jun-Ki;Ko Rock-Kil;Ha Hong-Soo;Song Kyu-Jeong;Youm Do-Jun;Park Chan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.27-32
    • /
    • 2004
  • High temperature superconducting coated conductor has a structure of /< superconducting layer>//. The buffer layer consists of multi layer, and the architecture most widely used in RABiTS approach is CeO$_2$(cap layer)/YSZ(diffusion barrier layer)/CeO$_2$(seed layer). Evaporation technique is used for the CeO$_2$ layer and DC reactive sputtering technique is used for the YSZ layer, A chamber was set up specially for DC reactive sputtering, Detailed features are as following. A separator divided the chamber into two halves a sputtering chamber and a reaction chamber. The argon gas for sputtering target elements flows out of the cap of sputtering gun, and water vapor for reaction with depositing species spouts near the substrate. Turbo pump is connected with reaction chamber. High speed deposition of YSZ film could be achieved in the chamber. Detailed deposition conditions (temperature and partial pressure of reaction gas) were investigated for the rapid growth of high quality YSZ film.

Numerical Studies of Flow Characteristics and Particle Residence Time in a Taylor Reactor (테일러 반응기의 유동특성과 입자 체류시간에 관한 수치적 연구)

  • Lee, Hyeon Kwon;Lee, Sang Gun;Jeon, Dong Hyup
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.67-73
    • /
    • 2015
  • Using a computational fluid dynamics technique, the flow characteristics and particle residence time in a Taylor reactor were studied. Since flow characteristics in a Taylor reactor are dependent on the operating conditions, effects of the inlet flow velocity and reactor rotational speed were investigated. In addition, the particle residence time of $LiNiMnCoO_2$ (NMC), which is a cathode material in lithium-ion battery, is estimated in the Taylor vortex flow (TVF) region. Without considering the complex chemical reaction at the inlet, the effect of Taylor flow was studied. The results show that the particle residence time increases as the rotating speed increased and the flow rate decreased.

CNC Tool Path Planning for Free-Form Sculptured Surface with a New Tool Path Interval Algorithm (새로운 공구경로간격 알고리듬을 이용한 자유곡면에서의 CNC 공구경로 계획)

  • Lee, Sung-Gun;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.43-49
    • /
    • 2001
  • A reduced machining time and increased accuracy for the sculptured surface are very important when producing complicated parts. The step-size and tool-path interval are essential components in high speed and high resolution machining. If they are small, the machining time will increase, whereas if they are large, rough surfaces will be caused. In particular, the machining time, which is key in high speed machining, is affected by the tool-path interval more than the step-size. The conventional method for calculating the tool=path interval is to select a small parametric increment of a small increment based on the curvature of the surface. However, this approach also has limitations. The first is that the tool-path interval can not be calculated precisely. The second is that a separate tool-path interval needs to be calculated in each of the three cases. The third is that the conversion from Cartesian domain to parametric domain or vice versa must be necessary. Accordingly, the current study proposes a new tool-path interval algorithm that do not involve a curvature and that is not necessary for any conversion and a variable step-size algorithm for NURBS.

  • PDF

Empirical Evaluation of Tidal Current Generation System at Ul-Dol-Mok in Jin-do (진도 울돌목 조류발전 시스템 실증 평가)

  • Moon, Seok-Hwan;Park, Byung-Gun;Kim, Ji-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.157-163
    • /
    • 2016
  • The empirical evaluation of grid-connected tidal current generation system is presented in this paper. The Ul-dol-mok in Jin-do has been estimated to have tidal power of 1GW. In order to experiment, HAT (Horizontal Axis Turbine) 3-blade and 20kW grid-connected tidal current generation system was established at Ul-dol-mok in Jin-do. To generate power of generator, the speed reference of the PMSG is generated from the Cp curve and TSR (Tip Speed Ratio) of the designed turbine. The control of the converter connected to the grid is controlled to regulate unity power factor. The result showed that the turbine efficiency and system efficiency is 37 % and 31 %. This was achieved that target rate is 30 %, 20 %, respectively.

An Application of Triple Segmental System in Golf Swing through an Inverse Dynamics Function (Inverse Dynamics 함수를 이용한 골프스윙 3분절 시스템의 적용)

  • Lim, Jung;Moon, Gun-Pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.57-67
    • /
    • 2005
  • The purpose of this study was to analyze the kinetic factors of the golf driver swing using the Inverse Dynamics function. For this purpose, joint force were calculated. In order to test the possibility of Inverse Dynamics function(motion-dependent interaction), a triple segmental system was set for wrist, left shoulder and lumbar and joint force working on the anatomical joint region was estimated. For this study, 7 professional golfers were sampled, and then, their driver swings were recorded with two high-speed digital video cameras (180 frames/sec.) to be synthesized into 3-dimensional images and coordinated. Then, Eular's equation was used to produce some kinematic data, which were used to calculate joint force and torque with Newton's function. All data were calculated using LabVIEW 6.1 graphic program. The results of this study can be summarized as follows; It was found that the joint force was generated on wrist, shoulder and lumbar joints in the direction of the target, and that the joint force was stronger in the direction of target immediately before impact. The joint force was generated towards the target to activate the nodes, and then, it was generated in the reverse direction to increase the speed during impact.

Basic Research for Development of Hypereutectic Al-Si Alloyed Cylinder Block Bore by Plasma Spraying System for Internal Diameters (내경 플라즈마 용사법에 의한 과공정 Al-Si 합금의 실린더 블록 보어 개발을 위한 기초연구)

  • Kim, Byeong-Hui;Lee, Hyeong-Geun;Kim, Hye-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.965-971
    • /
    • 2001
  • The objective of this study is to investigate the characteristics - microstructure, hardness, adhesive strength and friction coefficient - of the coatings with aging - treatment after optimizing internal- plasma spraying parameters for Al-30wt%Si powder as a basic research to manufacture the cylinder block bore for Al engine composed of Al-30wt%Si alloy on Al alloy, The optimum internal-plasma spraying parameters of Al-30wt%Si alloy are summarized as follows: voltage: 37.5V, current: 160A, working distance: 25mm, gun traverse speed: 4.5mm/s, rotating speed: 518m/min. The primary Si particles grew aggressively with increasing heat-treating temperature. The hardness of the as-sprayed coating was about Hv=275 but this value was abruptly decreased with increasing heat-treating temperature. And average friction coefficient of the coating was below 0.08 after heat treatment for 48h at $175^{\circ}C$.

  • PDF

The Basic Study on Design of Linear Pulse Motor for Embroidery Machine Characteristics (자수기 특성을 고려한 LPM의 설계에 관한 기초연구)

  • Park, Chang-Soon;Kwon, Tae-Gun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.765-767
    • /
    • 2001
  • Linear pulse Motors(LPM) are widely used in fields where smooth linear motion is required, and their position accuracy is higher than other motors. Hybrid linear pulse motors(HLPM) are regarded as an excellent solution to positioning problems that require high accuracy, rapid acceleration and high-speed. The LPM has low mechanical complexity, high reliability, precise open-loop operation and low inertia etc. in many application areas such as factory automation speed positioning, computer peripherals and numerically controlled machine tools. This motor drive system is especially suitable for machine tools the high position accuracy and repeatability. This paper describes about that need of the embroider machine, we want to design position-scanning device for the embroidery machine. At first, to be analysed characteristics of the machine and next designed the LPM. we used the field analysis program, The finite element method(FEM) program tool is employed for calculation the force. The reluctance models will be used the magnetic permeance of air gap by static- conditions. The forces between forcer and platen have been calculated using the virtual work method.

  • PDF

Basic Research of Optimum Routing Assessment System for Safe and Efficient Voyage (운항 안전 및 효율성 향상을 위한 최적 항로 평가 시스템 기본 연구)

  • Lee, Jin-Ho;Choi, Kyong-Soon;Park, Gun-Il;Kim, Mun-Sung;Bang, Chang-Seon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.1 s.139
    • /
    • pp.57-63
    • /
    • 2005
  • This paper introduces basic research of optimum routing assessment system as voyage support purpose which can obtain safe and efficient route. In view point of safety, the prediction of ship motion should be evaluated in the condition of rough weather This part includes general seakeeping estimation based on 3 dimensional panel method and parametric roil prediction. For increasing voyage efficiency, ETA(Estimated Time of Arrival) and fuel consumption should be calculated considering speed reduction and power increase due to wave effects based on added resistance calculation and ship performance characteristics. Basically, the weather forecast is assumed to be prepared previously to operate this system. The idea of these factors in this system will be helpful to escape from dangerous voyage situation by wave conditions and to make optimum route planning based on ETA and fuel consumption.

Relationship between Wetness Index and Weathering degree of Rocks in Woogak Mounyain, Koheung-gun, Jeonnam-do (전남 고흥군 우각산 일대의 습윤지수와 암석의 풍화정도와의 상관관계)

  • Kim, Sung-Wook;Kim, Guk-Lac;Han, Ji-Young;Yoon, Won-Seop;Kim, Choon-Sik;Kim, In-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.882-889
    • /
    • 2004
  • Wetness index obtained from topography data of Woogak Mountain was compared with chemical alteration index(CAI), clay minerall contents of rock, and magnetic susceptibility changes of outcrops, and they show a close interrelationship. It is shown that the wetness index can be used as a quantitative indicator of the weathering degree of rocks. Moreover, wetness index simulate quantitatively the hydrologic condition of the local area. Therefore, it is anticipated that wetness index can be used as the data that calculate the weathering speed of rock and weathering grade in the study of weathering sensitivity of rock.

  • PDF

Optimum Design for an Air Current Pulverizing Blade Using the Computational Fluid Dynamics (CFD분석을 통한 기류식 분쇄기 날개부의 최적설계)

  • Kim, Gun-hoi;Kim, Han-bit
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.8-14
    • /
    • 2020
  • In the air current pulverizing type grinding method, the blade wings fitted inside a casing are rotated at a high speed to generate a cornering air current, which facilitates the collision of materials with one another, leading to the pulverizing phenomenon. In contrast to mechanical grinding, grit pulverizing leads to fine grinding and less acid waste and degeneration of the material. Moreover, this approach prevents the loss of nutritional value, while allowing the milling grain to have an excellent texture. However, the existing air current pulverizing type machines consist of prefabricated blades, which cannot be rotated at a speed higher than 5,000 rpm. Consequently, the grinding process becomes time consuming with a low productivity. To overcome these problems, in this study, the shape and structure of the air current pulverizing type wings were optimized to allow rapid grinding at more than 8,000 rpm. Moreover, the optimal design for the ripening parts for the air current pulverizing type device was determined by performing a computational fluid dynamics analysis based on airflow analyses to produce machinery that can grinding materials to the order of micrometers.