• Title/Summary/Keyword: Guided bone regeneration

검색결과 288건 처리시간 0.019초

골형성유도단백질(rhBMP-2)을 이용한 치조골 결손부의 골이식술 (Bone graft of alveolar bone defects using rhBMP-2)

  • 김수관
    • 대한치과의사협회지
    • /
    • 제53권1호
    • /
    • pp.6-13
    • /
    • 2015
  • A new field in dental implantology is developing with the goal of finding new ways to improve the osteoconductivity of bone substitutes and to study new molecules able to dictate cellular differentiation and improve bone regeneration. The real future in bone regeneration seems to be in connection with the rhBMP-2s, currently obtained by synthesis using recombinant DNA. Since the first rhBMP-2 studies in humans by Boyne, There are many studies for bone regeneration at oral and maxillofacial area. The rhBMP-2 is widely used at sinus augmentation, alveolar bone defect, and socket preservation.

Assessment of dehydrothermally cross-linked collagen membrane for guided bone regeneration around peri-implant dehiscence defects: a randomized single-blinded clinical trial

  • Lee, Jae-Hong;Lee, Jung-Seok;Baek, Won-Sun;Lim, Hyun-Chang;Cha, Jae-Kook;Choi, Seong-Ho;Jung, Ui-Won
    • Journal of Periodontal and Implant Science
    • /
    • 제45권6호
    • /
    • pp.229-237
    • /
    • 2015
  • Purpose: The aim of this study was to determine the clinical feasibility of using dehydrothermally cross-linked collagen membrane (DCM) for bone regeneration around peri-implant dehiscence defects, and compare it with non-cross-linked native collagen membrane (NCM). Methods: Dehiscence defects were investigated in twenty-eight patients. Defect width and height were measured by periodontal probe immediately following implant placement (baseline) and 16 weeks afterward. Membrane manipulation and maintenance were clinically assessed by means of the visual analogue scale score at baseline. Changes in horizontal thickness at 1 mm, 2 mm, and 3 mm below the top of the implant platform and the average bone density were assessed by cone-beam computed tomography at 16 weeks. Degradation of membrane was histologically observed in the soft tissue around the implant prior to re-entry surgery. Results: Five defect sites (two sites in the NCM group and three sites in the DCM group) showed soft-tissue dehiscence defects and membrane exposure during the early healing period, but there were no symptoms or signs of severe complications during the experimental postoperative period. Significant clinical and radiological improvements were found in all parameters with both types of collagen membrane. Partially resorbed membrane leaflets were only observed histologically in the DCM group. Conclusions: These findings suggest that, compared with NCM, DCM has a similar clinical expediency and possesses more stable maintenance properties. Therefore, it could be used effectively in guided bone regeneration around dehiscence-type defects.

가토 경골 골결손부에서 Nylon Membrane과 Teflon Membrane의 골유도 재생 효과 (EFFECT OF TEFLON MEMBRANE AND NYLON MEMBRANE ON GUIDED BONE REGENERATON IN RABBIT TIBIA)

  • 김관식;조병욱;이용찬
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제26권2호
    • /
    • pp.146-153
    • /
    • 2000
  • The purpose of present study is comparing the effect of Teflon Membrane and Nylon Membrane on bone regeneration in rabbit tibia. The 6 defects of $8{\times}8{\times}5mm$ size were drilled with dental handpiece in rabbit tibia, which on left side as an order of Control group(no coverage), Group 1(Nylon $5{\mu}m$ size), Group 3(Nylon $10{\mu}m$ size), and on right side Control group, Group 2($5{\mu}m$ Teflon), Group 4($10{\mu}m$ Teflon). Animals were killed at 7, 10, 14, 42 days to make specimens and observed the difference of healing potentials with light microscopy. The results were as follows ; 1. New bone formation has taken place at 14 days in Guided Bone Regeneration (GBR) group comparing to the Control group of massive inflammatory status. 2. Larger pore membrane allows more favorable healing potentials. Bone formation started earlier in larger membrane pore groups than smaller groups, until 14 days. 3. Bone forming potentials of Teflon membrane group was higher than Nylon membrane groups, Control group has the lowest bone forming potentials. 4. New bone formation was almost ended in 42 days, and there was no difference of bone formation between Nylon and Teflon membrane group of different size. There was no difference of bone formation at final stage(42 days) between Nylon membrane and Teflon membrane of same pore size. So nylon membrane may be clinically usable in guided bone regeneration case with further studies.

  • PDF

골유도재생술을 동반한 임플란트의 생존율에 대한 연구 (Long-term Retrospective Study on Cumulative Survival Rate of Implants with Guided Bone Regeneration)

  • 정석현;김준환;남궁다정;김윤정;정재은;구영
    • 대한구강악안면임플란트학회지
    • /
    • 제22권4호
    • /
    • pp.196-209
    • /
    • 2018
  • Purpose: The purpose of this study was to analyze the cumulative survival rate of dental implants installed with guided bone regeneration (GBR), and also elucidate the factors related with the survival of dental implants. Material and Methods: This retrospective study was conducted on 148 dental implants installed in 76 patients by one specialist (Y.K.) at the Department of Periodontology and Implant Center, Seoul National University Dental Hospital from 2001 to 2010. The cumulative survival rates were obtained by the Kaplan-Meier method. The correlations between various factors and dental implant survival were analyzed by using the log-rank test and Cox proportional hazards model. Results: Among 148 dental implants installed in 76 patients, 8 implants in 7 patients were lost and the cumulative survival rates up to 5-years and 10-years were 97% and 89%, respectively. Gender, smoking status and location of implant were significantly associated with the cumulative survival rate of implants (p < 0.05). Age, history of hypertension and diabetes were not significantly associated with the cumulative survival rate of implants (p > 0.05). Conclusion: The dental implants installed with guided bone regeneration is predictable technique according to the results of cumulative survival rate over 10 years.

A study of bone regeneration effect according to the two different graft bone materials in the cranial defects of rabbits

  • Song, Hyun-Jong;Kim, Hyun-Woo;Min, Gwi-Hyeon;Lee, Won-Pyo;Yu, Sang-Joun;Kim, Byung-Ock
    • 구강생물연구
    • /
    • 제42권4호
    • /
    • pp.198-207
    • /
    • 2018
  • Guided tissue regeneration (GBR) has been used to promote new bone formation in alveolar bone reconstruction at defective bone sites following tooth loss. Bone grafts used in GBR can be categorized into autogenous, xenogenous, and synthetic bones, and human allografts depending on the origin. The purpose of this study was to compare the rates of bone regeneration using two different bone grafts in the cranial defects of rabbits. Ten New Zealand rabbits were used in this study. Four defects were created in each surgical site. Each defect was filled as follows: with nothing, using a 50% xenograft and 50% human freeze-dried bone allograft (FDBA) depending on the volume rate, human FDBA alone, and xenograft alone. After 4 to 8 weeks of healing, histological and histomorphometric analyses were carried out. At 4 weeks, new bone formation occurred as follows: 18.3% in the control group, 6.5% in group I, 8.8% in group II, and 4.2% in group III. At 8 weeks, the new bone formation was 14.9% in the control group, 36.7% in group I, 39.2% in group II, and 16.8% in group III. The results of this study suggest that the higher the proportion of human FDBA in GBR, the greater was the amount of clinically useful new bone generated. The results confirm the need for adequate healing period to ensure successful GBR with bone grafting.

Poly(alpha-hydroxy acids) 제제 생분해성 차폐막의 치주조직 재생유도능력에 관한 조직학적 장기관찰 (The long-term study on the guided tissue regeneration with poly(${\alpha}-hydroxy\;acid$} membranes in beagle dogs)

  • 류인철;구영;정종평;한수부;최상묵
    • Journal of Periodontal and Implant Science
    • /
    • 제27권3호
    • /
    • pp.633-645
    • /
    • 1997
  • The recent trend of research and development on guided tissue regeneration focuses on the biodegradable membranes, which eliminate the need for subsequent surgical removal. They have demonstrated significant and equivalent clinical improvements to the ePTFE membranes. This study evaluate guided tissue regeneration wound healing in surgically induced intrabony periodontal defects following surgical treatment with a synthetic biodegradable membranes, made from a copolymer of glycolide and lactide, in 8 beagle dogs. After full thickeness flap reflection, exposed buccal bone of maxillary and mandibular canine and premolar was removed surgically mesiodistally and occlusoapically at $6mm{\times}6mm$ in size for preparation of periodontal defects. In experimental sites a customized barrier was formed and fitted to cover the defect. Flap was replaced slightly coronal to CEJ and sutured. Plaque control program was initiated and maintained until completion of the study. In 4, 8, 16 and 24 weeks after surgery, the animals were sacrificed and then undecalcified specimens were prepared for histologic evaluation. Histologic examination indicated significant periodontal regeneration characterized by new connective tissue attachment, cementum formation and bone formation. These membranes showed good biocompatibility throughout experiodontal period. The barriers had been completely resorbed with no apparent adverse effect on periodontal wound healing at 24 weeks. These results implicated that present synthetic biodegradable membrane facilitated guided tissue regeneration in periodontal defect.

  • PDF

매식체 주위 열개형 골결손부에서 차단막과 골 이식술의 사용이 골 형성에 미치는 영향에 대한 임상 및 조직병리학적 연구 (Clinical and histopathological study on the effect of Nonresorbable membrane with Demineralized freeze dried bone graft for Guided Bone Regeneration in Implant Dehiscence Defects)

  • 권칠성;홍기석;임성빈;정진형;이종헌
    • Journal of Periodontal and Implant Science
    • /
    • 제35권3호
    • /
    • pp.687-702
    • /
    • 2005
  • The purpose of this study is to examine the effect of non-resorbable membrane such as e-PTFE which was used with DFDB in bone regeneration on dehiscence defect in peri-implant area. Amomg the patients, who have recieved an implant surgery at the department of Periodontics in Dan Kook University Dental Hospital, 12 patients showed implant exposure due to the dehiscence defect and 15 implants of these 22 patients were the target of the treatment. Periodontists randomly applied $Gore-Tex^{(R)}$ to the patients and treated them with antibiotics for five days both preoperatively and postoperatively. Reentry period was 26 weeks on average in maxilla and 14 weeks on average in mandible. The results were as follows : 1. Dehiscence bone defect frequently appeared in premolar in mandible and anterior teeth in maxilla respectively. 2. Among 15 cases, 1 membrane exposure was observed and in this case, regenerated area was decreased. 3. In non-resorbable membrane, bone surface area $9.25{\pm}4.84$ preoperatively and significantly increased to $11.48{\pm}7.52$ postoperatively(0.05). 4. The increase of bone surface area in non-resorbable membrane was $2.23{\pm}3.38$. 5. As a result of histopathological finding, DFDB surrounded by new bone formation and lamellate bone, resorption of DFDB and bone mineralization was found. Also, fibrosis of connective tissue beneath the membrane was found. This study shows that the surgical method using DFDB and non-resorbable membrane on dehiscence defect in peri-implant area is effective in bone regeneration.

Risk Factors for Wound Dehiscence after Guided Bone Regeneration in Dental Implant Surgery

  • Kim, Young-Kyun;Yun, Pil-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제36권3호
    • /
    • pp.116-123
    • /
    • 2014
  • Purpose: The purpose of this study was to evaluate risks for wound dehiscence after guided bone regeneration (GBR) in dental implant surgery. Methods: Patients who received dental implant therapy with GBR procedure at Seoul National University Bundang Hospital (Seongnam, Korea) from June 2004 to May 2007 were included. The clinical outcome of interest was complications related to dental implant surgery. The factors influencing wound dehiscence, classified into patient-related factors, surgery-related factors and material-related factors, were evaluated. Results: One hundred and fifteen cases (202 implants) were included in this study. Wound dehiscence (19.1%) was considered a major complication. The risk of wound dehiscence was higher in males than in females (odds ratio=4.279, P =0.014). In the main graft, the allogenic group had the lowest risk of wound dehiscence (odds ratio=0.106, P =0.006). Though the external connection group had a higher risk of wound dehiscence than the internal connection group (odds ratio=2.381), the difference was not significant (P =0.100). Conclusion: In this study, male gender and main graft have the highest risk of wound dehiscence. To reduce wound dehiscence after GBR, instructions on postoperative care with supplementary procedure for the protection of the wound dehiscence is recommended, especially to male patients. A main graft with a gel base can reduce the risk of wound dehiscence.

흡수성 차폐막으로 조직 유도 재생술시 골이식재가 성견 치주조직 재생에 미치는 영향 (The Effect of Calcium-Phosphate Bovine Bone Powder on Guided Tissue Regeneration Using Biodegradable Membrane in Dogs)

  • 박종범;임성빈;정진형;김종여
    • Journal of Periodontal and Implant Science
    • /
    • 제30권1호
    • /
    • pp.167-180
    • /
    • 2000
  • The present study evaluated the effects of guided tissue regeneration using biodegradable membrane, with and without calcium-phosphate thin film coated deproteinated bone powder in beagle dogs. Contralateral fenestration defects(6 × 4 mm) were created 4 mm apical to the buccal alveolar crest on maxillary canine teeth in 5 beagle dogs. Ca-P thin film coated deproteinated bone powder was implanted into one randomly selected fenestration defect(experimental group). Biodegradable membranes were used to provide bilateral GTR. Tissue blocks including defects with overlying membranes and soft tissues were harvested following a four- & eight-week healing interval and prepared for histologic analysis. The results of this study were as follows. 1.......The regeneration of new bone, new periodontal ligament, and new cementum was occurred in experimental group more than control group. 2.......The collapse of biodegradable membranes into defects were showed in control group and the space for regeneration was diminished. In experimental group, the space was maintained without collapse by graft materials. 3........In experimental group, the graft materials were resorbed at 4 weeks after surgery and regeneration of bone surrounding graft materials was occurred at 8 weeks after surgery. 4.......Biodegradable membranes were not resorbed at 4 weeks and partial resorption was occurred at 8 weeks but the framework and the shape of membranes were maintained. No inflammation was showed at resorption. In conclusion, the results of the present study suggest that Ca-P thin film coated deproteinated bone powder has adjunctive effect to GTR in periodontal fenestration defects. Because it has osteoconductive property and prohibit collapse of membrane into defect, can promote regeneration of much new attachment apparatus.

  • PDF

수종의 성분해성 차폐막의 생체분해도 및 조직 재생유도 능력에 관한 연구 (Evaluation of biodegradability and tissue regenerative potential of synthetic biodegradable membranes)

  • 김동균;구영;이용무;정종평
    • Journal of Periodontal and Implant Science
    • /
    • 제27권1호
    • /
    • pp.151-163
    • /
    • 1997
  • The purpose of this study was to evaluate on the biodegradability, biocompatibility and tissue regenerative capacity of synthetic biodegradable $mernbranes-Resolut^{(R)}$, $Guidor^{(R)}$ and $Biomesh^{(R)}$. To evaluate the cell attachment on the membranes, in vitro, the number of gingival fibroblasts attached to each membrane was counted by hemocytometer. Cytotoxicity test for the membranes was performed by MTT test with gingival fibroblast For evaluation of guided- bone regenerative potential, the amount of new bone formation in the rat calvarial defects(5mm in diameter) beneath the membranes was observed for two weeks and examined of the specimens by Massons trichrome staining. Biodegradability was observed for 2, 4, 8 and 12 weeks after implantation of each materials under the skin of rats and examined the specimens with H & E staining. The number of cell attachment were the greatest in $Biomesh^{(R)}$ and followed by $Resolut^{(R)}$. Cell viability of three membranes was almost similar levels. Biodegradability of $Resolut^{(R)}$ was the highest among three membrane and the potential of guided bone regeneration was the greatest in the $Biomesh^{(R)}$ and $Resolut^{(R)}$ was followed. These results suggested that commercially available biodegradable membranes were non-toxic and highly potential to guided bone regeneration.

  • PDF