• Title/Summary/Keyword: Growth regulator

Search Result 602, Processing Time 0.03 seconds

No Association of Hypoxia Inducible Factor-1α Gene Polymorphisms with Breast Cancer in North-West Indians

  • Sharma, Sarika;Kapahi, Ruhi;Sambyal, Vasudha;Guleria, Kamlesh;Manjari, Mridu;Sudan, Meena;Uppal, Manjit Singh;Singh, Neeti Rajan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9973-9978
    • /
    • 2014
  • Background: Hypoxia inducible factor-1 alpha (HIF-$1{\alpha}$) is the key regulator of cellular responses to hypoxia and plays a central role in tumour growth. Presence of Single nucleotide polymorphisms (SNPs) in the critical regulatory domains of HIF-$1{\alpha}$ may result in the overexpression of the protein and subsequent changes in the expression of the downstream target genes. The aim of study was to investigate the association of three SNPs (g.C111A, g.C1772T and g.G1790A) of HIF-$1{\alpha}$ with the risk of breast cancer in North Indian sporadic breast cancer patients. Materials and Methods: A total of 400 subjects, including 200 healthy controls and 200 patients with breast cancer were recruited in this study. Genotypes were determined using polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) method. Results: The CC and CA genotype frequency of HIF-$1{\alpha}$ g.C111A polymorphism was 100 vs 99% and 0 vs 1% in breast cancer patients and healthy controls respectively. The frequencies of CC, CT and TT genotype of g.C1772T polymorphism were 76 vs 74.5%, 19 vs 21% and 5 vs 4.5% in breast cancer patients and control individuals respectively. There was no significant difference in genotype and allele frequencies of HIF-$1{\alpha}$ g.C1772T polymorphism between cases and control individuals (p>0.05). For g.G1790A genotypes, all patients and controls had only GG genotype. Conclusions: The three HIF-$1{\alpha}$ polymorphisms (g.C111A, g.C1772T and g.G1790A) are not associated with breast cancer risk in North-West Indian patients.

Function of Global Regulator CodY in Bacillus thuringiensis BMB171 by Comparative Proteomic Analysis

  • Qi, Mingxia;Mei, Fei;Wang, Hui;Sun, Ming;Wang, Gejiao;Yu, Ziniu;Je, Yeonho;Li, Mingshun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.152-161
    • /
    • 2015
  • CodY is a highly conserved protein in low G+C gram-positive bacteria that regulates genes involved in sporulation and stationary-phase adaptation. Bacillus thuringiensis is a grampositive bacterium that forms spores and parasporal crystals during the stationary phase. To our knowledge, the regulatory mechanism of CodY in B. thuringiensis is unknown. To study the function of CodY protein in B. thuringiensis, BMB171codY- was constructed in a BMB171 strain. A shuttle vector containing the ORF of cry1Ac10 was transformed into BMB171 and BMB171codY-, named BMB171cry1Ac and BMB171codY-cry1Ac, respectively. Some morphological and physiological changes of codY mutant BMB171codY-cry1Ac were observed. A comparative proteomic analysis was conducted for both BMB171codY-cry1Ac and BMB171cry1Ac through two-dimensional gel electrophoresis and MALDI-TOF-MS/MS analysis. The results showed that the proteins regulated by CodY are involved in microbial metabolism, including branched-chain amino acid metabolism, carbohydrate metabolism, fatty acid metabolism, and energy metabolism. Furthermore, we found CodY to be involved in sporulation, biosynthesis of poly-β-hydroxybutyrate, growth, genetic competence, and translation. According to the analysis of differentially expressed proteins, and physiological characterization of the codY mutant, we performed bacterial one-hybrid and electrophoretic mobility shift assay experiments and confirmed the direct regulation of genes by CodY, specifically those involved in metabolism of branched-chain amino acids, ribosomal recycling factor FRR, and the late competence protein ComER. Our data establish the foundation for in-depth study of the regulation of CodY in B. thuringiensis, and also offer a potential biocatalyst for functions of CodY in other bacteria.

Genetic Character and Insecticide Susceptibility on a Korean Population of a Subtropical Species, Maruca vitrata (아열대성 콩명나방의 국내 집단에 대한 유전적 특성과 살충제 감수성 분석)

  • Kim, Yonggyun;Sadekuzzaman, Md.;Kim, Minhyun;Kim, Kyusoon;Park, Youngjin;Jung, Jin Kyo
    • Korean journal of applied entomology
    • /
    • v.55 no.3
    • /
    • pp.257-266
    • /
    • 2016
  • Subtropical insect pests expand their habitats by migration to temperate zones along with global climate change. A subtropical insect pest, Maruca vitrata, is infesting leguminous crops including azuka beans in Korea and gives significant economic damages. Its great genetic variation raised an issue of the origin of a Korean M. vitrata population. To understand the genetic character of the Korean population, its cytochrome oxidase subunit 1 (cox 1) gene was sequenced and phylogenetically analyzed with other regional populations. The world populations of M. vitrata were grouped into three clusters: Asia-African, American, and Oceanian. The Korean population was classified into Asia-African cluster. To characterize the insecticide susceptibility of the Korean population, seven different insecticides (4 neutoxic insecticides, 1 insect growth regulator, 2 biopesticides) were assessed. Young larvae of M. vitrata were relatively susceptible to all tested insecticides. However, old larvae were much less susceptible than young larvae. No test insecticides effectively (> 50%) killed the old larvae of M. vitrata within 7 days.

Inhibition of poly 3-hydroxybutyrate (PHB) synthesis by phaR deletion in Methylobacterium extorquens AM1 (메탄올자화균 Methylobacterium extorquens AM1의 phaR 유전자 결실을 통한 poly 3-hydroxybutyrate (PHB) 생합성 억제)

  • Kim, Yujin;Lee, Kwanghyun;Kim, Hyeonsoo;Cho, Sukhyeong;Lee, Jinwon
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.363-368
    • /
    • 2017
  • Methylotrophy is able to use reduced one-carbon compound, such as methanol and methylamine, as a sole carbon source. Methylobacterium extorquens AM1 is the most extensively studied methylotroph utilizing serine-isocitrate lyase cycle. Because the Poly 3-hydroxybutyrate (PHB) synthesis pathway in M. extorquens AM1 is likely to interlink with EMCP (ethylmalonyl-CoA pathway), glyoxylate, and TCA cycles, regulation of PHB production is needed to produce EMCP-derived acid or TCA acids. To adjust carbon flux to PHB production, PhaR, which seems to have function of regulator of PHB synthesis and acetyl-CoA flux, was knocked out in M. extorquens AM1 by using markerless gene deletion methods. As a result, PHB granules were remarkably reduced in the knockout strain ${\Delta}phaR$ compared to parental strain. Although lag phase was extended for 12h, ${\Delta}phaR$ showed similar cell growth and methanol consumption rate compared to wild type.

Aspirin-Triggered Resolvin D1 Inhibits TGF-β1-Induced EndMT through Increasing the Expression of Smad7 and Is Closely Related to Oxidative Stress

  • Shu, Yusheng;Liu, Yu;Li, Xinxin;Cao, Ling;Yuan, Xiaolong;Li, Wenhui;Cao, Qianqian
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.132-139
    • /
    • 2016
  • The endothelial-mesenchymal transition (EndMT) is known to be involved in the transformation of vascular endothelial cells to mesenchymal cells. EndMT has been confirmed that occur in various pathologic conditions. Transforming growth factor ${\beta}1$ (TGF-${\beta}1$) is a potent stimulator of the vascular endothelial to mesenchymal transition (EMT). Aspirin-triggered resolvin D1 (AT-RvD1) has been known to be involved in the resolution of inflammation, but whether it has effects on TGF-${\beta}1$-induced EndMT is not yet clear. Therefore, we investigated the effects of AT-RvD1 on the EndMT of human umbilical vein vascular endothelial cells line (HUVECs). Treatment with TGF-${\beta}1$ reduced the expression of Nrf2 and enhanced the level of F-actin, which is associated with paracellular permeability. The expression of endothelial marker VE-cadherin in HUVEC cells was reduced, and the expression of mesenchymal marker vimentin was enhanced. AT-RvD1 restored the expression of Nrf2 and vimentin and enhanced the expression of VE-cadherin. AT-RvD1 did also affect the migration of HUVEC cells. Inhibitory ${\kappa}B$ kinase 16 (IKK 16), which is known to inhibit the NF-${\kappa}B$ pathway, had an ability to increase the expression of Nrf2 and was associated with the inhibition effect of AT-RvD1 on TGF-${\beta}1$-induced EndMT, but it had no effect on TGF-${\beta}1$-induced EndMT alone. Smad7, which is a key regulator of TGF-${\beta}$/Smads signaling by negative feedback loops, was significantly increased with the treatment of AT-RvD1. These results suggest the possibility that AT-RvD1 suppresses the TGF-${\beta}1$-induced EndMT through increasing the expression of Smad7 and is closely related to oxidative stress.

Reconstructed Adeno-Associated Virus with the Extracellular Domain of Murine PD-1 Induces Antitumor Immunity

  • Elhag, Osama A.O.;Hu, Xiao-Jing;Wen-Ying, Zhang;Li, Xiong;Yuan, Yong-Ze;Deng, Ling-Feng;Liu, De-Li;Liu, Ying-Le;Hui, Geng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4031-4036
    • /
    • 2012
  • Background: The negative signaling provided by interactions of the co-inhibitory molecule, programmed death-1 (PD-1), and its ligands, B7-H1 (PD-L1) and B7-DC (PD-L2), is a critical mechanism contributing to tumor evasion; blockade of this pathway has been proven to enhance cytotoxic activity and mediate antitumor therapy. Here we evaluated the anti-tumor efficacy of AAV-mediated delivery of the extracellular domain of murine PD-1 (sPD-1) to a tumor site. Material and Methods: An rAAV vector was constructed in which the expression of sPD-1, a known negative regulator of TCR signals, is driven by human cytomegalovirus immediate early promoter (CMV-P), using a triple plasmid transfection system. Tumor-bearing mice were then treated with the AAV/sPD1 construct and expression of sPD-1 in tumor tissues was determined by semi quantitative RT-PCR, and tumor weights and cytotoxic activity of splenocytes were measured. Results: Analysis of tumor homogenates revealed sPD-1 mRNA to be significantly overexpressed in rAAV/sPD-1 treated mice as compared with control levels. Its use for local gene therapy at the inoculation site of H22 hepatoma cells could inhibit tumor growth, also enhancing lysis of tumor cells by lymphocytes stimulated specifically with an antigen. In addition, PD-1 was also found expressed on the surfaces of activated CD8+ T cells. Conclusion: This study confirmed that expression of the soluble extracellular domain of PD-1 molecule could reduce tumor microenvironment inhibitory effects on T cells and enhance cytotoxicity. This suggests that it might be a potential target for development of therapies to augment T-cell responses in patients with malignancies.

Tumour Suppressive Effects of WEE1 Gene Silencing in Breast Cancer Cells

  • Ghiasi, Naghmeh;Habibagahi, Mojtaba;Rosli, Rozita;Ghaderi, Abbas;Yusoff, Khatijah;Hosseini, Ahmad;Abdullah, Syahrilnizam;Jaberipour, Mansooreh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6605-6611
    • /
    • 2013
  • Background: WEE1 is a G2/M checkpoint regulator protein. Various studies have indicated that WEE1 could be a good target for cancer therapy. The main aim of this study was to asssess the tumor suppressive potential of WEE1 silencing in two different breast cancer cell lines, MCF7 which carries the wild-type p53 and MDA-MB468 which contains a mutant type. Materials and Methods: After WEE1 knockdown with specific shRNAs downstream effects on cell viability and cell cycle progression were determined using MTT and flow cytometry analyses, respectively. Real-time PCR and Western blotting were conducted to assess the effect of WEE1 inhibition on the expression of apoptotic (p53) and anti-apoptotic (Bcl2) factors and also a growth marker (VEGF). Results: The results showed that WEE1 inhibition could cause a significant decrease in the viability of both MCF7 and MDA-MB-468 breast cancer cell lines by more than 50%. Interestingly, DNA content assays showed a significant increase in apoptotic cells following WEE1 silencing. WEE1 inhibition also induced upregulation of the apoptotic marker, p53, in breast cancer cells. A significant decrease in the expression of VEGF and Bcl-2 was observed following WEE1 inhibition in both cell lines. Conclusions: In concordance with previous studies, our data showed that WEE1 inhibition could induce G2 arrest abrogation and consequent cell death in breast cancer cells. Moreover, in this study, the observed interactions between the pro- and anti-apoptotic proteins and decrease in the angiogenesis marker expression confirm the susceptibility to apoptosis and validate the tumor suppressive effect of WEE1 inhibition in breast cancer cells. Interestingly, the levels of the sensitivity to WEE1 silencing in breast cancer cells, MCF7 and MDA-MB468, seem to be in concordance with the level of p53 expression.

An Integrated Biological Control Using an Endoparasitoid Wasp (Cotesia plutellae) and a Microbial Insecticide (Bacillus thuringiensis) against the Diamondback Moth, Plutella xylostella (배추좀나방에 대한 프루텔고치벌과 미생물농약의 통합생물방제)

  • Kim, Kyusoon;Kim, Hyun;Park, Young-Uk;Kim, Gil-Hah;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.52 no.1
    • /
    • pp.35-43
    • /
    • 2013
  • All tested Korean populations of the diamondback moth, Plutella xylostella, are known to be resistant especially against pyrethroid insecticides by mutation in its molecular target, para-sodium channel. Moreover, P. xylostella is able to develop resistance against most commercial insecticides. This study was performed to develop an efficient control technique against P. xylostella by a combined treatment of an endoparasitoid wasp, Cotesia plutellae, and a microbial insecticide, Bacillus thuringiensis. To investigate any parasitism preference of C. plutellae against susceptible and resistant P. xylostella, five different populations of P. xylostella were compared in insecticide susceptibilities and parasitism by C. plutellae. These five P. xylostella populations showed a significant variation against three commercial insecticides including pyrethroid, organophosphate, neonicotinoid, and insect growth regulator. However, there were no significant differences among five P. xylostella populations in their parasitic rates by C. plutellae. Moreover, parasitized larvae of P. xylostella showed significantly higher susceptibility to B. thuringiensis. As an immunosuppressive agent, viral ankyrin genes (vankyrins) encoded in C. plutellae were transiently expressed in nonparasitized larvae. Expression of vankyrins significantly enhanced the efficacy of B. thuringiensis against the third instar larvae of P. xylostella. Thus an immunosuppression induced by C. plutellae enhanced the insecticidal efficacy of B. thuringiensis. These results suggest that a combined treatment of C. plutellae and B. thuringiensis may effectively control the insecticide-resistant populations of P. xylostella.

Production of Recombinant Human Hyperglycosylated Erythropoietin Using Cell Culture Technology by Improving Sialylation. (Sialic Acid 함량 증가 배양기술에 의한 재조합 인간 다당쇄 에리스로포이에틴의 생산)

  • 박세철;이승오;박만식;김승훈;김준환;송무영;이병규;고인영;강희일
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.142-148
    • /
    • 2004
  • Erythropoietin is a main regulator of human erythropoiesis. Recombinant human erythropoietin (rhEPO) is one of the glycoproteins produced in animal cells, and it has oligo saccharides chains which comprise about 40% of its molecular mass. Because the content of sialic acid can extend circulatory lifetime, the high degree of sialylation is often a desirable feature of therapeutic glycoproteins. In this study, the sialylation of rhEPO produced by chinese hamster ovary cell culture was maximized by supplementing the culture medium with N-acetylm-annosamine (ManNAc), a direct intracellular precursor for sialic acid synthesis and 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (NeuAc2en), a sialidase inhibitor. Feeding of 20 mM ManNAc/0.5 mM NeuAc2en into culture medium increased the sialic acid content by nearly tenfold compared with unsupplemented medium. This effect was achieved without affecting the cell growth or product yield. Six erythropoietin fractions differing in sialic acid content, ranging from 11∼15% of EPO, were identified from chinese hamster ovary cell-derived rhEPO by mono Q column chromatography. It was found that, at 20 mM ManNAc/0.5 mM NeuAc2en feeding, productivity of hyper-glycosylated EPO increased up to 50%, compared with the unsupplemented medium.

In vitro shoot regeneration from leaf tissue of "Whangkeumbae" pear(Pyrus pyrifolia Nakai) (황금배(Pyrus pyrifolia Nakai) 잎 조직으로부터 기내 신초 재분화)

  • Chun, Jae An;Do, Kyung Ran;Kim, Se Hee;Cho, Kang-Hee;Kim, Hyun Ran;Hwang, Hae Sung;Shin, Il Sheob
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.288-294
    • /
    • 2012
  • In order to establish an efficient adventitious shoot regeneration conditions from leaf explants for Asian pear 'Whangkeumbae', the effect of concentration and kinds of plant growth regulator and carbon source was investigated. Leaf explants of cultures grown on Murashige and Skoog (MS) medium containing 8 g/L plant agar were used. When the medium contained 0.25 mg/L thidiazuron (TDZ) and 0.3 mg/L indolebutyric acid (IBA), the adventitious shoot regeneration rate (ASRR) was greater as 61.1% than others treated and higher TDZ concentrations (2.5 and 5 mg/L) treatment significantly reduced the ASRR. As the effect of IBA and indoleacetic acid (IAA) concentration on the ASRR, 0.5 mg/L TDZ plus different concentration of IAA exhibited relatively high ASRR and 0.5 mg/L TDZ plus 0.3 mg/L IAA showed the highest ASRR of 76.7%. Also the effect of sucrose and sorbitol as carbon source on regeneration was examined. The highest ASRR and the most shoots per explants averaged 94.4% and 3.49 by treatment of 30 mg/L sorbitol, respectably. Sorbitol is considered better carbon source than sucrose for shoot regeneration of 'Whangkeumbae' pear.