Browse > Article
http://dx.doi.org/10.5656/KSAE.2013.01.1.080

An Integrated Biological Control Using an Endoparasitoid Wasp (Cotesia plutellae) and a Microbial Insecticide (Bacillus thuringiensis) against the Diamondback Moth, Plutella xylostella  

Kim, Kyusoon (Major in Plant Medicals, School of Bioresource Sciences, Andong National University)
Kim, Hyun (Major in Plant Medicals, School of Bioresource Sciences, Andong National University)
Park, Young-Uk (Department of Plant Medicine, Chungbook National University)
Kim, Gil-Hah (Department of Plant Medicine, Chungbook National University)
Kim, Yonggyun (Major in Plant Medicals, School of Bioresource Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.52, no.1, 2013 , pp. 35-43 More about this Journal
Abstract
All tested Korean populations of the diamondback moth, Plutella xylostella, are known to be resistant especially against pyrethroid insecticides by mutation in its molecular target, para-sodium channel. Moreover, P. xylostella is able to develop resistance against most commercial insecticides. This study was performed to develop an efficient control technique against P. xylostella by a combined treatment of an endoparasitoid wasp, Cotesia plutellae, and a microbial insecticide, Bacillus thuringiensis. To investigate any parasitism preference of C. plutellae against susceptible and resistant P. xylostella, five different populations of P. xylostella were compared in insecticide susceptibilities and parasitism by C. plutellae. These five P. xylostella populations showed a significant variation against three commercial insecticides including pyrethroid, organophosphate, neonicotinoid, and insect growth regulator. However, there were no significant differences among five P. xylostella populations in their parasitic rates by C. plutellae. Moreover, parasitized larvae of P. xylostella showed significantly higher susceptibility to B. thuringiensis. As an immunosuppressive agent, viral ankyrin genes (vankyrins) encoded in C. plutellae were transiently expressed in nonparasitized larvae. Expression of vankyrins significantly enhanced the efficacy of B. thuringiensis against the third instar larvae of P. xylostella. Thus an immunosuppression induced by C. plutellae enhanced the insecticidal efficacy of B. thuringiensis. These results suggest that a combined treatment of C. plutellae and B. thuringiensis may effectively control the insecticide-resistant populations of P. xylostella.
Keywords
Integrated Biological Control; Insecticide Resistance; Bacillus thuringiensis; Cotesia plutellae; Plutella xylostella;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Shi, Z., Guo, S., Lin, W., Liu, S., 2004. Evaluation of selective toxicity of five pesticides against Plutella xylostella (Lep: Plutellidae) and their side-effects against Cotesia plutellae (Hym: Braconidae) and Oomyzus sokolowskii (Hym: Eulophidae). Pest Mang. Sci. 60, 1213-1219.   DOI   ScienceOn
2 Shirane, M., Hatakeyama, S., Hattori, K., Nakayama, K., Nakayama, K.-I., 1999. Common pathway for the ubiquitination of $I{\kappa}B{\alpha}$, $I{\kappa}B$ ${\beta}$, and $I{\kappa}B{\varepsilon}$ mediated by the F-box protein FWD1. J. Biol. Chem. 274, 28169-28174.   DOI
3 Tabashnik, B.E., Liu, Y.B., Malvar, T., Heckel, D.G., Masson, L., Ballester, V., Granero, F., Mensua, J.L., Ferre, J., 1997. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 94, 12780-12785.
4 Thoetkiattikul, H., Beck, M.H., Strand, M.R., 2005. Inhibitor ${\kappa}B-like$ proteins from a polydnavirus inhibit $NF-{\kappa}B$ activation and suppress the insect immune response. Proc. Natl. Acad. Sci. USA 102: 11426-11431.   DOI   ScienceOn
5 Webb, B.A., 1998. Polydnavirus biology, genome structure, and evolution, in: Miller, L.K., Ball, L.A. (Eds.), The insect viruses. Plenum Publishing Corporation, New York, pp. 105-139.
6 Williamson, M.S., Martinez-Torres, D., Hick, C.A., Devonshire, A.L., 1996. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet. 252, 51-60.   DOI   ScienceOn
7 Yuan, G., Gao, W., Yang, Y., Wu, Y., 2010. Molecular cloning, genomic structure, and genetic mapping of two RDL-orthologous genes of GABA receptors in the diamondback moth, Plutella xylostella. Arch. Insect Biochem. Physiol. 74, 81-90.
8 Bae, S., Kim, Y., 2004. Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth Plutella xylostella. Comp. Biochem. Physiol. A 138, 39-44.   DOI   ScienceOn
9 Bae, S., Kim, Y., 2009. IkB genes encoded in Cotesia plutellae bracovirus suppress an antiviral response and enhance baculovirus pathogenicity against the diamondback moth, Plutella xylostella. J. Invertebr. Pathol. 102, 79-87.   DOI   ScienceOn
10 Beg, A.A., Baldwin, A.S., 1993. The $I{\kappa}B$ proteins: multifunctional regulators of $Rel/NF-_{\kappa}$B transcription factors. Genes Dev. 7, 2064-2070.   DOI   ScienceOn
11 Burke, J.R., Wood, M.K., Ryseck, R.P., Walther, S., Meyers, C.A., 1999. Peptides corresponding to the N and C termini of $I{\kappa}B-{\alpha}$, $-{\beta}$, and $-{\varepsilon}$ as probes of the two catalytic subunits of $I{\kappa}B$ kinase, IKK-1 and IKK-2. J. Biol. Chem. 274, 36146-36152.   DOI   ScienceOn
12 Chen, Y., Gao, F., Ye, X., Wei, S., Shi, M., Zheng, H., Chen, X.X., 2011. Deep sequencing of Cotesia vestalis bracovirus reveals the complexity of a polydnavirus genome. Virology 414, 42-50.   DOI   ScienceOn
13 Choi, J.Y., Rho, J.Y., Kang, J.N., Shim, H.J., Woo, S.D., Jin, B.R., Li, M.S., Je, Y.H., 2005. Genomic segments cloning and analysis of Cotesia plutellae polydnavirus using plasmid capture system. Biochem. Biophys. Res. Commun. 332, 487-493.   DOI   ScienceOn
14 Heptat, R., Kim, Y., 2012. In vivo transient expression for the functional analysis of polydnaviral genes. J. Invertebr. Pathol. 111, 152-159.   DOI   ScienceOn
15 Karin, M., 1999. The beginning of the end: $I{\kappa}B$ kinase (IKK) and $NF-_{\kappa}B$ activation. J. Biol. Chem. 274, 27339-27342.   DOI
16 Kwon, D.H., Choi, B.R., Park, H.M., Lee, S.H., Miyata, T., Clark, J.M., Lee, S.H., 2004. Knockdown resistance allele frequency in field populations of Plutella xylostella in Korea. Pestic. Biochem. Physiol. 80, 21-30.   DOI   ScienceOn
17 Kim, Y., 2006. Polydnavirus and its novel application to insect pest control. Kor. J. Appl. Entomol. 45, 241-259.   과학기술학회마을
18 Kim, Y., Choi, J.Y., Je, Y.H., 2007. Cotesia plutellae bracovirus genome and its function in altering insect physiology. J. Asia Pac. Entomol. 10, 181-191.   과학기술학회마을   DOI   ScienceOn
19 Kroemer, J.A., Webb, B.A., 2005. $I{\kappa}B-related$ vankyrin genes in the Campoletis sonorensis ichnovirus: temporal and tissue-specific patterns of expression in parasitized Heliothis virescens lepidopteran hosts. J. Virol. 79, 7617-7628.   DOI   ScienceOn
20 Latimer, M., Ernst, M.K., Dunn, L.L., Drutskaya, M., Rice, N.R., 1998. The N-terminal domain of $I{\kappa}B{\alpha}$ masks the nuclear localization signal(s) of p50 and c-Rel homodimers. Mol. Cell. Biol. 18, 2640-2649.   DOI
21 Lin, P.H., Huange, L.H., Steward, R., 2000. Cactin, a conserved protein that interacts with the Drosophila IĸB protein cactus and modulates its function. Mech. Dev. 94, 57-65.   DOI   ScienceOn
22 Liu, Z.P., Galindo, R.L., Wasserman, S.A., 1997. A role for CKII phosphorylation of the cactus PEST domain in dorsoventral patterning of the Drosophila embryo. Genes Dev. 11, 3413-3422.   DOI
23 Liu, S., Wang, X., Guo, S., He, J., Shi, Z., 2000. Seasonal abundance of the parasitoid complex associated with the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) in Hangzhou, China. Bull. Entomol. Res. 90, 221-231.
24 Schuler, T.H., Denholm, I., Clark, S.J., Stewart, C.N., Poppy, G.M., 2004. Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J. Insect Physiol. 50, 435-443.   DOI   ScienceOn
25 Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476.   DOI   ScienceOn
26 Raymond, M., 1985. Presentation d'un programme basic d'analyse log-probit pour micro-ordinateur. Cah. ORSTOM. Ser. Ent. Med. et Parasitol. 23, 117-121.
27 SAS Institute, 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
28 Schuler, T.H., Martinez-Torres, D., Thompson, A.J., Denholm, I., Devonshire, A.L., Duce, I.R., Williamson, M.S., 1998. Toxicological, electrophysiological, and molecular characterisation of knock-down resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.). Pestic. Biochem. Physiol. 59, 169-182.   DOI   ScienceOn
29 Senftleben, U., Cao, Y., Xiao, G., Greten, F.R., Krahn, G., Bonizzi, G., Chen, Y., Hu, Y., Fong, A., Sun, S.C., Karin, M., 2001. Activation by $IKK{\alpha}$ of a second evolutionarily conserved, $NF-_{\kappa}B$ signaling pathway. Science 293, 1495-1499.   DOI   ScienceOn
30 Seo, S.Y., Kim, Y., 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Kor. J. Appl. Entomol. 50, 171-178.   과학기술학회마을   DOI   ScienceOn
31 Seo, S.Y., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase $A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78, 3816-3823.   DOI