• Title/Summary/Keyword: Growth phase

Search Result 3,671, Processing Time 0.043 seconds

PHASE FIELD MODELING OF CRYSTAL GROWTH

  • Sekerka, Robert F.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.139-156
    • /
    • 1996
  • The phase field model is becoming the model of choice for the theoretical study of the morphologies of crystals growth from the melt. This model provides an alternative approach to the solution of the classical (sharp interface) model of solidification by introducing a new variable, the phase field, Ø, to identify the phase. The variable Ø takes on constant values in the bulk phases and makes a continuous transition between these values over a thin transition layer that plays the role of the classically sharp interface. This results in Ø being governed by a new partial differential equation(in addition to the PDE's that govern the classical fields, such as temperature and composition) that guarantees (in the asymptotic limit of a suitably thin transition layer) that the appropriate boundary conditions at the crystal-melt interface are satisfied. Thus, one can proceed to solve coupled PDE's without the necessity of explicitly tracking the interface (free boundary) that would be necessary to solve the classical (sharp interface) model. Recent advances in supercomputing and algorithms now enable generation of interesting and valuable results that display most of the fundamental solidification phenomena and processes that are observed experimentally. These include morphological instability, solute trapping, cellular growth, dendritic growth (with anisotropic sidebranching, tip splitting, and coupling to periodic forcing), coarsening, recalescence, eutectic growth, faceting, and texture development. This talk will focus on the fundamental basis of the phase field model in terms of irreversible thermodynamics as well as it computational limitations and prognosis for future improvement. This work is supported by the National Science Foundation under grant DMR 9211276

  • PDF

Grain Growth and Texture Evolution of Mg: Phase Field Modeling (마그네슘의 결정립 성장과 집합조직: 상장모델 계산)

  • Kim, Dong-Uk;Cha, Pil-Ryung
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.168-171
    • /
    • 2011
  • We investigate grain growth behavior of poly-crystalline Mg sheet having strong basal fiber texture using phase field model for grain growth and micro-elasticity. Strong initial basal texture was maintained when external load was not imposed, but was weaken when external biaxial strain was imposed. Elastic interaction between elastic anisotropy of Mg grain and external load is the reason why texture evolution occurs.

Modeling of Typical Microbial Cell Growth in Batch Culture

  • Jianqiang Lin;Lee, Sang-Mok;Lee, Ho-Joon;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.382-385
    • /
    • 2000
  • A mathematical model was developed, based on the time dependent changes of the specific growth rate, for prediction of the typical microbial cell growth in batch cultures. This model could predict both the lag growth phase and the stationary growth phase of batch cultures, and it was tested with the batch growth of Trichoderma reesei and Lactobacillus delbrueckii.

  • PDF

Growth and dissolution behavior of $CaO{\cdot}6Al_2O_3$ phase by reaction between alumina and silicate liquid phase (알루미나와 실리케이트 액상간의 반응에 따른 $CaO{\cdot}6Al_2O_3$ 상의 성장 및 용해 거동)

  • 백용균;박상엽
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.3
    • /
    • pp.291-298
    • /
    • 1995
  • Abstract The growth and dissolution behaviour of reaction phase was studied during dissolution reaction between sintered alumina and $CaMgSiO_4$ at $1600^{\circ}C$ for various times. The formation of $CaO{\cdot}6Al_2O_3$ an intermediate reaction phase, and $CaMgSiO_4$ spinel, the final reaction product were observed during dissolution reaction of alumina into $CaMgSiO_4$ liquid phase. The growth and dissolution shape of $CaO{\cdot}6Al_2O_3$, an intermediate phase, was quite different.

  • PDF

Effects of Clearance on the Formation of Adiabatic Shear Band in Stepped Specimen (계단시편의 간극이 단열전단밴드의 형성에 미치는 영향)

  • Yoo, Y.H.;Jeon, G.Y.;Chung, D.T.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1700-1709
    • /
    • 1993
  • The stepped specimen which is subjected to step loading is modeled to study the initiation and growth of adiabatic shear band using explicit time integration finite element method. Three different clearance sizes are tested. The material model for the stepped specimen includes effects of strain hardening, strain rate hardening and thermal softening. It is found that the material inside the fully grown adiabatic shear band experiences three phase of deformation, (1) homogeneous deformation phase, (2) initiation/incubation phase, and (3) fast growth phase. The second phase of deformation is initiated after sudden shear stress drop which occurs at the same time regardless of the clearance size. The incubation time prior to fast growth phase increases, as the clearance size of the stepped specimen increases. Whereas, after incubation period, the growth rate of the adiabatic shear band decreases, as the clearance size decreases. It is also found that two adiabatic shear band may develop instead of one for the smaller clearance size.

A Study on Strain-Void Growth Mechanism of Dual Phase Steel by Statistical Method (통계적 방법을 이용한 복합조직강의 변형률과 보이드 성장거동에 관한 연구)

  • 오경훈;유용석;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.533-538
    • /
    • 2000
  • Ductile fracture of dual phase steel begins with void nucleation, at martensite-ferrite interface of deformed martensite particle. In this study, void nucleation, growth, and coalescence under various strain were studied in dual phase steel. Therefore, by means of the heat treatment of low carbon steel, the study deals with void nucleation and growth for ferrite grain size and martensite volume fraction of dual phase steel using statistical method. Void nucleation and growth with increasing strain are shown depend upon the ferrite grain size. Voids volume fraction generally increase as ferrite grain size decease.

  • PDF

Effect of Air-Phase Germination with Anion Radiation and Water-Spraying on Germination Ratio, Sprout Growth, and GABA Contents of Germinated Brown Rice

  • Lim, K.T.;Chung, J.H.;Hong, J.H.;Kim, J.H.;Lee, E.T.;Im, A.L.
    • Agricultural and Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.42-47
    • /
    • 2006
  • The objective of this study was to investigate the effects of air-phase germination with water-spraying and anion stimuli on germination ratio, sprout growth and ${\gamma}$-aminobutyric acid (GABA) of brown rice. Air-phase germination method with intermittent spraying water improved germination ratio and sprout growth by about 100% compared with the conventional water-soaking method. Anion radiation was applied during the germination process and improved the germination ratio, sprout growth and color quality of the germinated brown rice. Germination ratio and sprout growth were improved up to 9% with anion radiation, and its brightness was higher than brown rice germinated with no anion radiation. The air-phase germination with water-spraying improved the GABA content of germinated brown rice by about 8-9 times compared with that of brown rice.

  • PDF

Xylanase Production by Bacillus sp. A-6 Isolated from Rice Bran

  • Lee, Jun-Ho;Choi, Suk-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1856-1861
    • /
    • 2006
  • A Bacillus sp. A-6 strain that produced xylanase was isolated from rice bran. The optimal temperature and pH for xylanase activity of the culture supernatant of Bacillus sp. A-6 were 40$^{\circ}C$ and pH 7, respectively. The optimal temperature and pH for xylanase production in the xylan medium were 30$^{\circ}C$ and pH 9, respectively. The optimal concentrations of oat spelt xylan and peptone for xylanase production were 0.5% and 1.5%, respectively. The best nitrogen sources for xylanase production was beef extract, but xylanase production was also supported comparably by tryptone and peptone. The bacterial growth in the optimal xylan medium reached stationary growth phase after 12 h of incubation. The xylanase production in the culture supernatant increased dramatically during the initial 12 h exponential growth phase and then remained constant at 23.8-24.5 unit/ml during the stationary growth phase. The pH of the culture medium decreased from 8.8 to 6.7 during the exponential growth phase and subsequently increased to 8.1 during the stationary growth phase. Rice bran, sorghum bran, and wheat bran as well as oat spelt xylan induced xylanase production. The xylanase production was repressed when glucose was added to the xylan-containing medium.

Selectrive Liquid Phase Epitaxy of GaAs` Kinetics and MOrphology (비소화칼륨의 선택적 액상 에피층 성장;성장기구 및 형태)

  • Kim, Sang Bae;Kwon, Young Se
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.820-832
    • /
    • 1986
  • In contrast to conventional liquid phase epitaxy of GaAs, surface kinetics limited growth is predominant in selective liquid phase epitaxy. For the stripe openings in the high-index crystal-lographic directions, the well-known facet formations and the decompositions into the low index planes or smooth circular surfaces are observed depending on the growth kinetics. For the low index direction stripe, surface kinetics limited growth is evident. By a numerical calcualtion we show that these phenomena are due to the enhanced masstransport by two dimensional diffusion and growth rate anisotropy which is found to be very stdrong with cusped minima for some singular planes in the solution growth as well as in vapor phase epitaxy. Morphological stability is briefly treated in terms of diffusion and its implications on device application are stated. Tese phenomena may be common to III-V compound semiconductors as well as GaAs.

  • PDF

Expression of c-jun by X-ray According to Cell Growth State in CaSki Cell Line (CaSki 세포주에서 성장 상태에 따른 X-선에 의한 c-jun의 발현)

  • Jang, Seong-Sun;Park, Woo-Yoon
    • Radiation Oncology Journal
    • /
    • v.17 no.3
    • /
    • pp.223-229
    • /
    • 1999
  • Purpose : The expression pattern of c-jun by ionizing radiation according to cell growth state (exponential growth vs. stationary phase) and its relationship with cell cycle redistribution were investigated. Materials and Methods : The exponential growth phase (day 4) and stationary phase (day 9) cells were determined from cell growth curve according to the elapse of days in CaSki. The cells were irradiated using 6 MV X-ray with a dose of 2 Gy at a fixed dose rate of 3 Gy/min. Northern blot analysis was peformed with total cellular RNA and cell cycle distribution was analyzed using flow cytometry according to time-course after irradiation. Results : The maximum expression of c-jun occurred 1 hour after irradiation in both exponential growth and stationary phase cells. After then c-jun expression was elevated upto 6 hours in exponential growth phase cells, but the level decreased in stationary phase cells. Movements of cells from G0-G1 to S, G2-M phase after irradiation were higher in exponential growth phase than stationary phase. Conclusion : c-jun may be involved in the regulation of cellular proliferation according to the growth states after irradiation.

  • PDF