PHASE FIELD MODELING OF CRYSTAL GROWTH

  • Sekerka, Robert F. (Physics and Mathematics Carnegie Mellon University Pittsburgh)
  • Published : 1996.06.01

Abstract

The phase field model is becoming the model of choice for the theoretical study of the morphologies of crystals growth from the melt. This model provides an alternative approach to the solution of the classical (sharp interface) model of solidification by introducing a new variable, the phase field, Ø, to identify the phase. The variable Ø takes on constant values in the bulk phases and makes a continuous transition between these values over a thin transition layer that plays the role of the classically sharp interface. This results in Ø being governed by a new partial differential equation(in addition to the PDE's that govern the classical fields, such as temperature and composition) that guarantees (in the asymptotic limit of a suitably thin transition layer) that the appropriate boundary conditions at the crystal-melt interface are satisfied. Thus, one can proceed to solve coupled PDE's without the necessity of explicitly tracking the interface (free boundary) that would be necessary to solve the classical (sharp interface) model. Recent advances in supercomputing and algorithms now enable generation of interesting and valuable results that display most of the fundamental solidification phenomena and processes that are observed experimentally. These include morphological instability, solute trapping, cellular growth, dendritic growth (with anisotropic sidebranching, tip splitting, and coupling to periodic forcing), coarsening, recalescence, eutectic growth, faceting, and texture development. This talk will focus on the fundamental basis of the phase field model in terms of irreversible thermodynamics as well as it computational limitations and prognosis for future improvement. This work is supported by the National Science Foundation under grant DMR 9211276

Keywords