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The phase field model is becoming the model of choice for the theoretical study of
the morphologies of crystals growth from the melt. This model provides an alternative
approach to the solution of the classical (sharp interface) model of solidification by
introducing a new variable, the phase field, ¢, to identify the phase. The variable ¢
takes on constant values in the bulk phases and makes a continuous transition
between these values over a thin transition layer that plays the role of the classically
sharp interface. This resuits in ¢ being governed by a new partial differential equation
(in addition to the PDE’s that govern the classical fields, such as temperature and
composition) that guarantees (in the asymptotic limit of a suitably thin transition layer)
that the appropriate boundary conditions at the crystal-melt interface are satisfied.
Thus, one can proceed to solve coupled PDE’s without the necessity of explicitly
tracking the interface (free boundary) that would be necessary to solve the classical
(sharp interface) model. Recent advances in supercomputing and algorithms now
enable generation of interesting and valuable results that display most of the
fundamental solidification phenomena and processes that are observed
experimentally. These include morphological instability, solute trapping, celiular
growth, dendritic growth (with anisotropic sidebranching, tip splitting, and coupling to
periodic forcing), coarsening, recalescence, eutectic growth, faceting, and texture
development. This talk will focus on the fundamental basis of the phase field mcde! in
terms of irreversible thermodynamics as well as it computational limitations and
prognosis for future improvement. This work is supported by the National Science
Foundation under grant DMR 9211276
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1.The Phase Field Model
(Langer 1978, 1986; Collins and Levine 1985)

a. Irreversible thermodynamic basis

Based on entropy functional (Penrose and Fife
1990)

S = J [s(e,0) — 1e2(V$)’] dx
A%

¢=0, solid . ¢ =1, liquid

Ezf ed3x
v

Local positive rate of entropy production (Wang et
al. Physica D, 1993) and energy conservation:

RE™ = S+f (—%n +82(f>V¢-n)d2x20

A

RE™ = E+f (qn)d?x=0
A

The latter yields
e+Vq=0.
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Irreversible thermodynamic basis continued

The former yields (illustrated for the isotropic
case)

rod ’aS . é o . : \ 3
| o oo
+[ (%n+£2q3V¢-n)d2x20.

A

After integration by parts,
ds

i f SR

which becomes positive definite if we choose

) + €2V2¢]¢} x>0

q-= MTV ) MTV(—-*)
10 = aa;) g2V =—1 %) + £2V?%9.

For computations, choose M;=kT?= q =-kVT.
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Irreversible thermodynamic basis continued

The (Helmholtz) free energy density is then

T
_ B 1 oe(T".9) ..., Tg(®)
f(T,0) =e(T,9) Tjo T or dT" + 4a

T
=£,(D)-p(@) T f “D g, 19@)
(Tf 4a

Tm

For the simple case of parallel energy curves
near Ty, separated by L, one has simply

€(T0) = £,(T) + p(d) L& (Ty - T) + L3&)

TM 4a
T<Tp T>Tn
f(T,9) f(T.9)
=0 ¢ =1 ¢=0
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b. Anisotropy
Computations are done for anisotropic properties:

Let ¢ and © depend on O, the angle that the vector
VoIVl makes with a reference direction (Kobayashi).
Then asymptotics (in the manner of Caginalp except
anisotropic) leads to the boundary condition

| Tm
1+ NO) + 7(0)eq K+_Vn
Lv 1w(0)Ty

TI=

where (McFadden et al. 1993)

£(6)
) o< €(0); (0) e« ——
N H s
In computations, we can control separately the
anisotropy of surface tension and kinetics.

This nonlinear result agrees with that for the discrete
case (Gurtin 1986); the linearized version is

YO) + YO0  _ _V,
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c. Computational considerations for dendrites
(Mustrated for isotropic case, dimensionless)

Bu 30g(¢) 8¢ 2

V
200 S » u 0
?n.._aT =2V’ o + 30g(d)eaS 1 +SLvieTwu 4

where u = dimensionless temperature
(0 at melting point, —1 far field)
m = dy/pk Where d, is the capillary length
and p = xc/uL, is the kinetic length
(m very large = local equilibrium)

€ = 8/W = interface thickness parameter/system size

a = W/(6V2 d,)
S = dimensionless supercooling

To “resolve” Gibbs-Thomson effect, need 6 = d,

To “resolve” interface, need grid spacing = &
= 8 grid points as ¢ goes from 0 to 1 (like tanh)
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Computational considerations for dendrites cont.

BAX =80 =n<<p<<W

So practical considerations lead to

0 =dytoresolve Gibbs-Thomson

n = 8 dy to resolve interface

p = 80 d, to resolve the dendrite

W =800 to 3200 d, to get steady state

Since p = (dy/c*) P-1 and ¢* ~ 0.03, we need P = 0.5.
This requires very large supercoolings, S = 1.
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4. Results
a. Morphologies at large supercoolings
S=AT/ATy=0.8
m = (capillary length/kinetic Ienéih) =0.1
Fourfold sinusoidal anisotropies of capillarity and
kinetics (% shown below)

3% P>> .
4% >
5% >
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Distance from the tip
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a. Morphologies at large supercoolings cont.

Dendrite tips are more nearly hyperbolic than
parabolic (agrees with Brener & Temkin for S > 1)

0 %’:: 5> v T 1 j j ] T T
s locus of interface ¢
~ fitted parabola -----
fitted hyperbola ——
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a. Morphologies at large supercoolings cont.

RMS fits for hyperbola or parabola
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Abscissa is the num-ber, M, of fitted points
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b. Examples of power laws

Surface tension and kinetics have
anisotropies of 1 + 0.04 cos(460)

m = 0.05 relatively strong kinetics

m = 0.075 intermediate kinetics

m = 0.10 relatively weaker kinetics
(toward local equilibrium)
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b. Examples of power laws cont.

S = AT/AT,;=0.8
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m = (capillary length/kinetic length) = 0.1

Velocity and tip radius versus anisotropy of surface

tension and kinetics, both of the form

S

1 + 0 cos(40)
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c. Summary of power laws for large supercoolings

Case 1: Dendrites with anisotropic surface tension .
and isotropic kinetics: 0.03 < 87 <0.05; 0.7<8S <11

— 0.78 1.08 2.58
v ~3.55(5,)078 m108 §

Case 2: Dendrites with isotropic surface tension and
anisotropic kinetics: 0.05 <9, <0.075; 0.8 <S<1.1

v = 0.96 (5u)0.64 m0-81 §3.46

Case 3: Dendrites with anisotropic surface tension
and anisotropic kinetics: 0.03 <5, < 0.04;
0.01 <3, <0.04; 0.7<S<1.1

v =204 (57)0.41 (SH)OJQ m9-97 §2.71
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CONCLUSIONS

1. The phase field model can be used to model
dendritic growth, but with today’s computers
and algorithms, one gets results independent of
computational parameters only at very large
supercoolings.

2. Growth kinetics has a significant influence on the
dendrite operating state.

3. Dendrite tip shapes are more hearly hyperbolic
than parabolic at large supercoolings.

4. Scaling laws are still evident, but exponents are
different from those for small supercoolings.

4. ¢* is larger for increased kinetics and decreases
somewhat with supercooling.
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