• Title/Summary/Keyword: Growth and yield of rice

Search Result 1,093, Processing Time 0.035 seconds

A New Medium Maturing and High Quality Rice Variety with Lodging and Disease Resistance, 'Haeoreumi' (중생 고품질 내도복 내병성 벼 품종 '해오르미')

  • Kim, Jeong-Il;Park, No-Bong;Park, Dong-Soo;Lee, Ji-Yoon;Yeo, Un-Sang;Chang, Jae-Ki;Kang, Jung-Hun;Oh, Byeong-Geun;Kwon, Oh-Deog;Kwak, Do-Yeon;Lee, Jong-Hee;Yi, Gihwan;Kim, Chun-Song;Song, You-Cheon;Cho, Jun-Hyun;Nam, Min-Hee;Choung, Jin-Il;Shin, Mun-Sik;Jeon, Myeong-Gi;Yang, Sae-Jun;Kang, Hang-Weon;Ahn, Jin-Gon;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.638-644
    • /
    • 2010
  • A new rice variety 'Haeoreumi' is a japonica rice (Oryza sativa L.) with lodging tolerance, resistance to rice stripe virus (RSV) and bacterial leaf blight (BLB), and high grain quality. It was developed by the rice breeding team of Yeongdeog Substation, National Institute of Crop Science (NICS), RDA in 2008. This variety was derived from a cross between 'Milyang165' with good grain quality and lodging resistance, and 'Haepyeongbyeo' with wind tolerance in winter season of 2000/2001. A promising line, YR22375-B-B-1, selected by pedigree breeding method, was designated as the name of 'Yeongdeog46' in 2005. 'Yeongdeog46' was released as the name of 'Haeoreumi' in 2008 after the local adaptability test that was carried out at nine locations from 2006 to 2008. 'Haeoreumi' has 74 cm short culm length as and medium maturating growth duration. This variety showed resistance to $K_1,\;K_2$, and $K_3$ races of bacterial blight, and stripe virus and moderate resistant to leaf blast disease with durable resistance, and also has tolerance to unfavorable environment such as cold, dry and cold salty wind. 'Haeoreumi' has translucent and clear milled rice kernel without white core and white belly rice, and good eating quality as a result of panel test. The yield potential of 'Haeoreumi' in milled rice is about 5.58MT/ha at ordinary fertilizer level of local adaptability test. This cultivar would be adaptable to Middle plain, mid-west costal area, and east-south coastal area.

A New Medium Maturing and High Quality Rice Variety with Lodging and Disease Resistance, 'Jinbo' (중생 고품질 내도복 내병성 벼 품종 '진보')

  • Kim, Jeong-Il;Park, No-Bong;Lee, Ji-Yoon;Park, Dong-Soo;Yeo, Un-Sang;Chang, Jae-Ki;Kang, Jung-Hun;Oh, Byeong-Geun;Kwon, Oh-Deog;Kwak, Do-Yeon;Lee, Jong-Hee;Yi, Gi-Hwan;Kim, Chun-Song;Song, You-Cheon;Cho, Jun-Hyun;Nam, Min-Hee;Choung, Jin-Il;Shin, Mun-Sik;Jeon, Myeong-Gi;Yang, Sae-Jun;Kang, Hang-Weon;Ahn, Jin-Gon;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.43 no.3
    • /
    • pp.165-171
    • /
    • 2011
  • A new rice variety 'Jinbo' is a japonica rice (Oryza sativa L.) with good eating quality, lodging tolerance, and resistance to rice stripe virus (RSV) and bacterial blight disease (BB). It was developed by the rice breeding team of Yeongdeog Substation, National Institute of Crop Science (NICS), RDA in 2009. This variety was derived from a cross between 'Yeongdeog26' with good grain quality and wind tolerance and 'Koshihikari' with good eating quality in 1998 summer season. A promising line, YR21324-56-1-1, selected by pedigree breeding method, was designated as the name of 'Yeongdeog45' in 2005. After the local adaptability test was carried out at nine locations from 2006 to 2008, 'Yeongdeog45' was released as the name of 'Jinbo' in 2009. 'Jinbo' has short culm length as 74 cm and medium maturating growth duration. This variety is resistant to $K_1$, $K_2$, and $K_3$ races of bacterial blight and stripe virus and moderately resistant to leaf blast disease with durable resistance, and also it has tolerance to unfavorable environments such as cold and dried wind. 'Jinbo' has translucent and clear milled rice kernel without white core and white belly rice, and good eating quality as a result of panel test. The yield potential of 'Jinbo' in milled rice is about 5.65 MT/ha at ordinary fertilizer level in local adaptability test. This cultivar would be adaptable to middle plain, mid-west costal area, east-south coastal area, and south mid-mountainous area.

Effects of Application of Controlled Release Fertilizer Blended with Different Nitrogen Releasing Latex Coated Ureas on Rice Growth and Grain Quality (질소 용출속도가 다른 피복요소를 혼합한 완효성비료 시용이 벼 생육 및 쌀 품질에 미치는 영향)

  • Lee, Dong-Wook;Park, Ki-Do;Park, Chang-Young;Kang, Ui-Gum;Son, Il-Soo;Park, Sung-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.311-319
    • /
    • 2007
  • This study was conducted to estimate effects of application of controlled release complex fertilizer with latex coated urea (LCU-complex) on growth and grain quality of rice under direct seeded on dry paddy (DS) and transplanted on flooding paddy (TP). Three types of latex coated urea different nitrogen (N) releasing were LCU40, LCU80 and LCU100. The time of N releasing of LCU formulations in water at both 20 and $30^{\circ}C$ was faster in the order of LCU40, LCU80, LCU blend (LCU40, LCU80 and LCU100 was mixed in ratio of 2:2:1), and LCU100. The number of tillers and dry matter weight were great in order of LCU-complex 100% > LCU-complex80% > urea and plant height was not significant. Grain yields at LCU-complex80% in both DS and TP plot were similar to those of urea application. N recovery of LCU-complex80% and 100% was improved 8 and 6% compared to that of conventional urea split application in DS plot and 9 and 4% in TP. Content of protein of grain at applied LCU-complex was less 0.8% and $0.1{\sim}0.7%$ than that of urea in DS and TP, respectively. Content of amylose and Mg/K ratio in rice grain was not significant. Consequently application of LCU-complex blended types of coated urea different N releasing can be reduced 20% of N without yield reduction and improved grain quality compared with urea application.

Agroclimatic Zone and Characters of the Area Subject to Climatic Disaster in Korea (농업 기후 지대 구분과 기상 재해 특성)

  • 최돈향;윤성호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.13-33
    • /
    • 1989
  • Agroclimate should be analyzed and evaluated accurately to make better use of available chimatic resources for the establishment of optimum cropping systems. Introducing of appropriate cultivars and their cultivation techniques into classified agroclimatic zone could contribute to the stability and costs of crop production. To classify the agroclimatic zones, such climatic factors as temperature, precipitation, sunshine, humidity and wind were considered as major influencing factors on the crop growth and yield. For the classification of rice agroclimatic zones, precipitation and drought index during transplanting time, the first occurrence of effective growth temperature (above 15$^{\circ}C$) and its duration, the probability of low temperature occurrence, variation in temperature and sunshine hours, and climatic productivity index were used in the analysis. The agroclimatic zones for rice crop were classified into 19 zones as follows; (1) Taebaek Alpine Zone, (2) Taebaek Semi-Alpine Zone, (3) Sobaek Mountainous Zone, (4) Noryeong Sobaek Mountainous Zone, (5) Yeongnam Inland Mountainous Zone, (6) Northern Central Inland Zone, (7) Central Inland Zone, (8) Western Soebaek Inland Zone, (9) Noryeong Eastern and Western Inland Zone, (10) Honam Inland Zone, (ll) Yeongnam Basin Zone, (12) Yeongnam Inland Zone, (13) Western Central Plain Zone, (14) Southern Charyeong Plain Zone, (15) South Western Coastal Zone, (16) Southern Coastal Zone, (17) Northern Eastern Coastal Zone, (18) Central Eastern Coastal Zone, and (19) South Eastern Coastal Zone. The classification of agroclimatic zones for cropping systems was based on the rice agroclimatic zones considering zonal climatic factors for both summer and winter crops and traditional cropping systems. The agroclimatic zones were identified for cropping systems as follows: (I) Alpine Zone, (II) Mountainous Zone, (III) Central Northern Inland Zone, (IV) Central Northern West Coastal Zone, (V) Cental Southern West Coastal Zone, (VI) Gyeongbuk Inland Zone, (VII) Southern Inland Zone, (VIII) Southern Coastal Zone, and (IX) Eastern Coastal Zone. The agroclimatic zonal characteristics of climatic disasters under rice cultivation were identified: as frequent drought zones of (11) Yeongnam Basin Zone, (17) North Eastern Coastal Zone with the frequency of low temperature occurrence below 13$^{\circ}C$ at root setting stage above 9.1%, and (2) Taebaek Semi-Alpine Zone with cold injury during reproductive stages, as the thphoon and intensive precipitation zones of (10) Hanam Inland Zone, (15) Southern West Coastal Zone, (16) Southern Coastal Zone with more than 4 times of damage in a year and with typhoon path and heavy precipitation intensity concerned. Especially the three east coastal zones, (17), (18), and (19), were subjected to wind and flood damages 2 to 3 times a year as well as subjected to drought and cold temperature injury.

  • PDF

Proteomic Analysis and Growth Responses of Rice with Different Levels of Titanium Dioxide and UV-B (이산화티탄과 UV-B 수준에 따른 벼 생육과 프로테옴 해석)

  • Hong, Seung-Chang;Shin, Pyung-Gyun;Chang, An-Cheol;Lee, Ki-Sang;Lee, Chul-Won;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.69-80
    • /
    • 2007
  • Among the photoactive semiconductors such as $TiO_2,\;ZnO,\;Fe_2O_3,\;WO_3,\;and\;CdSe,\;TiO_2$ is the most widely used as photocatalyst in different media, because of its lack of toxicity and stability. In this study, the effects of titanium dioxide were investigated to obtain the information of physiological change in rice plant. Light-adapted Chlorophyll flourescence index decreased and relative electron transport rate of rice leaves was activated by titanium dioxide under $2,400\;{\mu}mol\;m^{-2}\;s^{-1}$ PAR (Photosynthetic active radiation). Relative electron transport rate of rice leaf treated with titanium dioxide 10 ppm was high in order of $2,400\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR,\;2,200\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR,\;450\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR$ and titanium dioxide 10 ppm (45.1%), control (32.4%), diuron 10 ppm (15.3%) under $2,400\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR$. Titanium dioxide increased photosynthesis of the rice leaf under $13.6\;KJ\;m^{-2}\;day^{-1}$ UV-B only. With titanium dioxide 20 ppm, reduced UV-B ($0.15\;KJ\;m^{-2}\;day^{-1}$) intensity changed the induction of proteins and twenty-five proteins were identified. Among them, seventy proteins were up-regulated, four proteins were down-regulated and four proteins were newly synthesized. Function of these proteins was related to photosynthesis (52%), carbohydrate metabolism (4%), stress/defense (8%), secondary metabolism (4%), energy/electron transport (4%), and miscellaneous (28%).

Studies on the utilization of sandy barren lands and sandy farm lands of low productivity -1. Studies on growing rice-plant in sandy barren lands (식량증산을 위한 유휴사지(遊休砂地) 및 사질계(砂質系) 농지(農地) 활용(活用)에 관한 기초적(基礎的) 연구(硏究) -1. 수도(水稻)의 사지재배(砂地栽培)에 관한 연구(硏究))

  • Kim, Yong Chul;Choe, Gyu Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.33-38
    • /
    • 1976
  • As a basic studies for increasing food production utilizing sandy barren lands and sandy farmlands of low productivity which distributed widely in Korea, an experiment of growing rice-plant on sandy barren land was undertaken as follows. 1. Variety, IR-667 was adopted and the growing method was a nutrient-irrigation culture which aimed to minimize percolation loss in sand with an automatic contineous supplying nutrient solution for supplmenting the sand characteristics. 2. The growth type price-plant after heading was a typical higher yield plant, that is, numerous, small, narrow, and thickend leaves, straight attitute, dense fasciculated etc. though the rooting of plant after planting was delayed because of using paddy-field grown seedling. 3. The adaptability of rice-plants on sandy land seemed to be different by varieties and IR-667 was more adaptable than ordinary Japonica varieties. 4. Even at the period of heading and maturing, the root system of rice-plant grown on sand showed vigorous growth having more activated apical portions. while, even the lower leaves showed flourished state. 5. The suppling of calcium and magnecium in addition to nitrogen, phosphorus and potassium on sand made notable increase of stem number per plant, grain number per stem and yields.

  • PDF

Development of Mixed Pesticides Containing Herbicide and Topdressing Fertilizer for Paddy Rice (벼 제초제(除草劑)와 분약비(分蘖肥) 혼합약제(混合藥劑)의 개발(開發))

  • Park, Yang-Ho;Lee, Byung-Moo;Park, Seung-Soon;Lee, In-Yong;Kim, Young-Koo;Park, Young-Sun
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.279-287
    • /
    • 1994
  • To develop mixed pesticides of herbicide and topdressing fertilizer for paddy rice, twelve mixtures were formulated with combination of urea coated with different level of acrylic acid wax(AAW) and four herbicides, which were thiobencarb, pretilachlor, mefenacet + bensulfuron-methyl and mefenacet + bensulfuron-methyl + dymron, and effects of the mixtures for weed control, phytotoxicity and rice tillering were investigated in the laboratory and the field experiments. Release rates of active ingredient of herbicides in the distilled water were over 90% during 24 hours same as that of the reference herbicides. The release rates of nitrogen showed different patterns according to coated level of granular urea with acrylic acid wax. Optimum release rate of nitrogen as $NH_4-N$ was obtained by 5.5% AAW coating on urea for thiobencarb or pretilachlor mixture, and by 4.0% AAW coating on urea for mefenacet + bensulfuron-methyl or mefenacet + bensulfuron-methyl + dymron mixture. The pesticide active ingredients of the mixtures were stable, which showed $3.7{\sim}8.0%$ of degradation rate after 90 days of storage under $50^{\circ}C$. Effects on weed control of mixtures were acceptable for both annual and perennial weeds, while ACRI-M9213 mixture showed considerable phytotoxicity at double dose of standard. When treated the mixed pesticides to paddy rice, rice growth status including culm length, ear length, panicle number and polished rice yield exhibited no significant differences compared with the conventional treatment.

  • PDF

An Outlook on Cereal Grains Production in South Korea Based on Crop Growth Simulation under the RCP8.5 Climate Change Scenarios (RCP8.5 기후조건의 작물생육모의에 근거한 우리나라 곡물생산 전망)

  • Kim, Dae-Jun;Kim, Soo-Ock;Moon, Kyung-Hwan;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.132-141
    • /
    • 2012
  • Climate change impact assessment of cereal crop production in South Korea was performed using land attributes and daily weather data at a farm scale as inputs to crop models. Farmlands in South Korea were grouped into 68 crop-simulation zone units (CZU) based on major mountains and rivers as well as existing land use information. Daily weather data at a 1-km grid spacing under the A1B- and RCP8.5 scenarios were generated stochastically to obtain decadal mean of daily data. These data were registered to the farmland grid cells and spatially averaged to represent climate conditions in each CZU. Monthly climate data for each decade in 2001~2100 were transformed to 30 sets of daily weather data for each CZU by using a stochastic weather generator. Soil data and crop management information for 68 CZU were used as inputs to the CERES-rice, CERE-barley and CROPGRO-soybean models calibrated to represent the genetic features of major domestic cultivars in South Korea. Results from the models suggested that the heading or flowering of rice, winter barley and soybean could be accelerated in the future. The grain-fill period of winter barley could be extended, resulting in much higher yield of winter barley in most CZUs than that of rice. Among the three major cereal grain crops in Korea, rice seems most vulnerable to negative impact of climate change, while little impact of climate change is expected on soybeans. Because a positive effect of climate change is projected for winter barley, policy in agricultural production should pay more attention to facilitate winter barley production as an adaptation strategy for the national food security.

A Medium-Maturing, High Non-Dietary Starch, Specialty Rice Cultivar 'Goami 3' (벼 중생 고 식이섬유 특수미 신품종 '고아미3호')

  • Lee, Sang-Bok;Lee, Jeom-Ho;Shin, Young-Seop;Lee, Kyu-Seong;Hwang, Hung-Goo;Jeong, O-Young;Yang, Chang-Ihn;Choi, Yong-Hwan;Yang, Sae-Jun;Jeon, Yong-Hee;Hong, Ha-Cheol;Kim, Hong-Yeol;Cho, Young-Chan;Lee, Jeong-Heui;Yea, Jong-Doo;Oh, Myung-Kyu;Kim, Myeong-Ki;Kim, Yeon-Gyu;Jeong, Kuk-Hyun;Lee, Young-Tae
    • Korean Journal of Breeding Science
    • /
    • v.43 no.6
    • /
    • pp.595-599
    • /
    • 2011
  • 'Goami 3' is a new japonica rice cultivar developed from a cross between Suweon464 and Daeanbyeo by the rice breeding team of National Institute of Crop Science, RDA. 'Goami3' has about 130 days growth duration from transplanting to heading in central plain area of Korea. It has a good semi-erect plant type and resistance to lodging of about 79 cm in culm length. 'Goami 3' had 15 panicles per hill and 104 spikelets per panicle. 'Goami 3' has very high amylose (29.5%) and high non-dietary starch compared with Hwaseongbyeo. This rice variety has slow senescence and 47% tolerance to viviparous germination during the ripening stage. 'Goami 3' is susceptible to leaf blast, bacterial blight, virus disease and insect pest. The yield performance of this cultivar in milled rice was about 3.92MT/ha by ordinary season culture in local adaptability test from 2005 to 2007. 'Goami 3' is adaptable to central and southern plain area of Korea.

Influence of Heavy Metal Contents in Soils Near Old Zinc-Mining Sites on the Growth of Corn (아연광산 인근 토양중의 중금속 함량이 옥수수 생육에 미치는 영향)

  • Lee, Jong-Pal;Park, No-Kwuan;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.241-250
    • /
    • 1994
  • This research was carried out to investigate how the growth of corn was affected by the heavy metal contents in soils near the old zinc-mining sites, by analyzing correlation between the growth of corn and heavy metal contents in soils collected from Yonghari Ilwoulmyun YongyangGun in Kyeongpook province in 1993. The results obtained were summarized as follows. 1. The contents of heavy metals such as Zn, Cu, Pb, Cd, and as in the Youngyang area were very high compared with those in a normal area. Heavy metal contents in soils collected from $2.0{\sim}2.5Km$ distance from the mining area were the highest, and those from 3.0 Km than those from 1.5 Km were even higher. 2. For heavy metal contents in leaves of all surveyed crops, Zn, Pb, Cu and As were the highest in soybean, followed by corn and rice. 3. Growth parameters of corn in polluted fields were comparatively poor and heavy metal contents in soils of the respective sites were higher than those in fields where rice was cultivated 8 years ago and irrigation was not done previously. 4. Heavy metal contents in the leaf part of corn plant showed a similar tendency to those in soils, being the highest among the different parts of corn plant, and they were in the decreasing order of Zn > Cu > As > Cd > Pb in each part. But the differences of metal contents in each part varied. 5. Generally, a negative relationship existed between the growth of corn and heavy metal contents in soil, of which Cu and Pb were significantly correlated with plant height, ear height, diameter of stem, ear length and yield of corn. 6. There existed a positive correlation between the contents of Pb,Cd and As in soils and those in the different parts of corn plant. The higher contents of Pb, Cd, and As in soil, the more those in corn plant incressed. The contents of Pb and As in corn grains showed a highly significant positive correlation with Cd and As contents in soils.

  • PDF