Browse > Article

Proteomic Analysis and Growth Responses of Rice with Different Levels of Titanium Dioxide and UV-B  

Hong, Seung-Chang (National Institute of Agricultural Science and Technology, RDA)
Shin, Pyung-Gyun (National Institute of Agricultural Science and Technology, RDA)
Chang, An-Cheol (National Institute of Agricultural Science and Technology, RDA)
Lee, Ki-Sang (National Institute of Agricultural Science and Technology, RDA)
Lee, Chul-Won (Department of Crop Science, Chungbuk National University)
Woo, Sun-Hee (Department of Crop Science, Chungbuk National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.52, no.1, 2007 , pp. 69-80 More about this Journal
Abstract
Among the photoactive semiconductors such as $TiO_2,\;ZnO,\;Fe_2O_3,\;WO_3,\;and\;CdSe,\;TiO_2$ is the most widely used as photocatalyst in different media, because of its lack of toxicity and stability. In this study, the effects of titanium dioxide were investigated to obtain the information of physiological change in rice plant. Light-adapted Chlorophyll flourescence index decreased and relative electron transport rate of rice leaves was activated by titanium dioxide under $2,400\;{\mu}mol\;m^{-2}\;s^{-1}$ PAR (Photosynthetic active radiation). Relative electron transport rate of rice leaf treated with titanium dioxide 10 ppm was high in order of $2,400\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR,\;2,200\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR,\;450\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR$ and titanium dioxide 10 ppm (45.1%), control (32.4%), diuron 10 ppm (15.3%) under $2,400\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR$. Titanium dioxide increased photosynthesis of the rice leaf under $13.6\;KJ\;m^{-2}\;day^{-1}$ UV-B only. With titanium dioxide 20 ppm, reduced UV-B ($0.15\;KJ\;m^{-2}\;day^{-1}$) intensity changed the induction of proteins and twenty-five proteins were identified. Among them, seventy proteins were up-regulated, four proteins were down-regulated and four proteins were newly synthesized. Function of these proteins was related to photosynthesis (52%), carbohydrate metabolism (4%), stress/defense (8%), secondary metabolism (4%), energy/electron transport (4%), and miscellaneous (28%).
Keywords
titanium dioxide ($TiO_2$); photosynthesis; proteome; rice;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, D. and A. K. Ray. 1998. Photodegradation kinetics of 4-nitrophenol in $TiO_{2}$ suspension. Water Research. 32 : 3223-3234   DOI   ScienceOn
2 De Carvalho, F., G. Gheysen, S. Kushnir, M. Van Montagu, D. Inze, and C. Castresana. 1992. Suppression of ${\beta}$-1, 3-­glucanase transgene expression in homozygous plants. Euro­pean Molecular Biology Organization Journal. 11 : 2595-­2602
3 Houtz, R. L. and A. R. Potris Jr. 2003. The life of ribulose 1,5-bisphosphate carboxylase/oxygenase-posttranslational facts and mysteries. Archives of Biochemistry and Biophysics 414 : 150-158   DOI   ScienceOn
4 Miziorko, H. M and Lorimer, G. H. 1983. Ribulose bispho­sphate carboxylase oxygenase. Annual Review of Bioche­mistry. 52 : 507-535   DOI   ScienceOn
5 Nordenkampe, B., S. P. Long, N. R. Baker, G. Oquist, U. Schreiber, and E. G. Lechner. 1989. Chorophyll fluorescence as a probe of the photostynthetic competence of leaves in the field : A review of current instrumentation. Functional Ecology. 3 : 497-514
6 Parry, M. A. J., P. J. Andralojc, S. Parmar, A. J. Keys, D. Habash, M. J. Paul, R. Alred, W. P, Quick, and J. C. Servaties. 1997. Regulation of Rubisco by inhibitors in the light. Plant, Cell and Environment. 20 : 528-534   DOI   ScienceOn
7 Pierce, J., N. E. Tolbert, and Barker. R. 1980. Interaction of ribulose bisphosphate carboxylase/oxygenase with transition­state analoge. Biochemistry. 19 : 934-942   DOI   ScienceOn
8 Seven, O., B. Dindar, S. Aydemir, D. Metin, M. A. Ozinel, and S. Icli. 2004. Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with $TiO_{2}$, ZnO and Sahara desert dust. Journal of Photochemistry and Photobiology. A : Chemistry. 165 : 103-107   DOI   ScienceOn
9 Hur, J. S., S. O. Oh, K. M. Lim, J. S. Jung, J. W. Kim, and Y. J. Koh. 2005. Novel effects of $TiO_{2}$ photocatalytic ozo­nation on control of postharvest fungal spoilage of kiwi­fruit. Postharvest Biology and Technology. 35 : 109-113   DOI   ScienceOn
10 Anandan, S. and M. J. Yoon. 2003. Heteropolyacid-encapsulated TiHY zeolite as an inorganic photosynthetic reaction center mimicking the plant systems. Journal of Photochemistry and Photobiology A:Chemistry. 160 : 181-184   DOI   ScienceOn
11 Spreitzer, R. J. 1998. Genetic engineering of rubisco. In the molecular biology of Chloroplasts and Mitochondria in Chlamydomonas. pp. 515-527, Kluwer Academic Publishers, Netherlands
12 Fujishima, A., T. N. Qao, and D. A. Tryk. 2000. Titanium dioxide photocatalysis. Journal of Photochemistry and Photo­biology C : Photochemistry Reviews 1 ; 1-21   DOI   ScienceOn
13 Koide, S. and T. Nonami. 2007. Disinfecting efficacy of a plastic container covered with photocatalyst for postharvest. Food Control. 18 : 1-4   DOI   ScienceOn
14 Andersson, I. 1996. Large Structures at High Resolution ; The 1.6 ${\AA}$ Crystal Structure of Spinach Ribulose-1,5-Bispho­sphate Carboxylase/Oxygenase Complexed with 2-Carbo­xyarabinitol Bisphosphate. Journal of Molecular Biology. 259(1) : 160-174   DOI   ScienceOn
15 Grossman, A. R., D. Bhaya, K. E. Apt, and D. M. Kehoe. 1995. Light-harvesting complexes in oxygenic photosynthesis : diversity, control and evolution. Annual Review of Genetics. 29 : 231-288   DOI   ScienceOn
16 Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72 : 248-254   DOI   ScienceOn
17 Sayed, O. H. 2003. Chlorophyll flurorescence as a tool in cereal crop research. Photosynthetica. 41 : 321-330   DOI
18 Wubben, J. P., M. H. A. J. Joosten, V. K. JAL, and M. D. Wit. 1992. Subcellular localization of plant chitinases and 1, 3-${\beta}$-glucanases in Cladosporium fulvum (syn. Fuvia fulva)-­infected tomato leaves. Physiological and Molecular Plant Pathology. 41 : 23-32   DOI
19 Pandey, A. and M. Mann. 2000. Proteomics to study genes and genomes. Nature. 405 : 837-846   DOI   ScienceOn
20 Sayama, K., K. Mukasa, R. Abe, Y. Abe, and H. Arakawa. 2002. A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. Journal of photochemistry and Photobiology. A : Chemistry. 148 ; 71-77   DOI   ScienceOn
21 Angela, G., N. Rincon, C. Pulgarin, N. Adler, and P. Peringer. 2001. Interaction between E. coli and DBP-precursors­dihydroxybenzen isomers in the photocatalytic process of drinking-water disinfection with $TiO_{2}$ . Journal of Photo­chemistry and Photobiology. A : Chemistry. 139(2-3) : 233­-241   DOI   ScienceOn
22 Gleiter, H. M. and G. Rengr. 1993. A simple fluorometric detection of photo system II inhibitors. pp. 69-74 in Boger and G. Sandmann, ed. Target Assay for Modem Herbicides and Related Phytotoxic Compounds. Lewis Pub. New York
23 Mizohata, E., H. Matsumura, Y. Okanp, M. Kumei, H. Takuma, J. Onodera, K. Kato, N. Shibata, T. Inoue, A. Y okoda, and Y. Kai. 2002. Journal of Molecular and Biology. 316 : 679-691   DOI   ScienceOn
24 Santos, I., F. Fialgo, J. A. Almeida, and R. S. Alema. 2004. Biochemical and ultrastructual change in leaves of potato plants grown under supplementary UV-B radiation. Plant Science. 167 : 925-935   DOI   ScienceOn
25 Schreuder, H. A., Knight. S, Curmi. P. M. G., Andersson. I., Cascio. D., Sweet, R., Branden. C. I., and Eisenberg. D. 1993. Crystal structure of activated tabacco rubisco com­plexed with the reaction-intermediated analogue 2-carboxyl­-arabinitol 1,5-bisphosphate. Protein Science. 2 : 1136-1145   DOI   ScienceOn