Proteomic Analysis and Growth Responses of Rice with Different Levels of Titanium Dioxide and UV-B

이산화티탄과 UV-B 수준에 따른 벼 생육과 프로테옴 해석

  • Hong, Seung-Chang (National Institute of Agricultural Science and Technology, RDA) ;
  • Shin, Pyung-Gyun (National Institute of Agricultural Science and Technology, RDA) ;
  • Chang, An-Cheol (National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Ki-Sang (National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Chul-Won (Department of Crop Science, Chungbuk National University) ;
  • Woo, Sun-Hee (Department of Crop Science, Chungbuk National University)
  • Published : 2007.03.31

Abstract

Among the photoactive semiconductors such as $TiO_2,\;ZnO,\;Fe_2O_3,\;WO_3,\;and\;CdSe,\;TiO_2$ is the most widely used as photocatalyst in different media, because of its lack of toxicity and stability. In this study, the effects of titanium dioxide were investigated to obtain the information of physiological change in rice plant. Light-adapted Chlorophyll flourescence index decreased and relative electron transport rate of rice leaves was activated by titanium dioxide under $2,400\;{\mu}mol\;m^{-2}\;s^{-1}$ PAR (Photosynthetic active radiation). Relative electron transport rate of rice leaf treated with titanium dioxide 10 ppm was high in order of $2,400\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR,\;2,200\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR,\;450\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR$ and titanium dioxide 10 ppm (45.1%), control (32.4%), diuron 10 ppm (15.3%) under $2,400\;{\mu}mol\;m^{-2}\;s^{-1}\;PAR$. Titanium dioxide increased photosynthesis of the rice leaf under $13.6\;KJ\;m^{-2}\;day^{-1}$ UV-B only. With titanium dioxide 20 ppm, reduced UV-B ($0.15\;KJ\;m^{-2}\;day^{-1}$) intensity changed the induction of proteins and twenty-five proteins were identified. Among them, seventy proteins were up-regulated, four proteins were down-regulated and four proteins were newly synthesized. Function of these proteins was related to photosynthesis (52%), carbohydrate metabolism (4%), stress/defense (8%), secondary metabolism (4%), energy/electron transport (4%), and miscellaneous (28%).

태양광과 반응하여 독특한 광화학적 작용을 하는 이산화티탄($TiO_2$)을 벼 잎 표면에 처리하였을 때 벼 엽신의 광합성 대사에 대한 영향을 검토하고 프로테옴 분석을 통해 생리변화를 구명하고자 수행한 결과를 요약하면 다음과 같다. 1. 광합성유효파장이 $2,400\;{\mu}mol\;m^{-2}\;s^{-1}$$2,200\;{\mu}mol\;m^{-2}\;s^{-1}$ 배치구에서 이산화티탄 10, 20 ppm 처리는 광적응상태의 엽록소형광지수(Yield)를 낮추었고 $450\;{\mu}mol\;m^{-2}\;s^{-1}$ 처리구는 엽록소형광지수를 높였다. 2. 노지조건인 PAR $2,400\;{\mu}mol\;m^{-2}\;s^{-1}$ 배치구에서 광합성 명반응의 상대전자전달율은 이산화티탄 10 ppm 처리에서 평균 45 %, 무처리 32.4 %, diuron 10 ppm 처리구에서 15.3%로 이산화티탄 처리는 광합성 명반응의 상대전자전달율을 높였다. 3. UV-B 4.9, $0.6\;KJ\;m^{-2}\;day^{-1}$ 배치구에서 이산화티탄 처리로 초장이 증가하였고 UV-B $0.15\;KJ\;m^{-2}\;day^{-1}$ 배치구에서 초장은 증가하고 건물중은 감소하였다. 4. 광합성은 노지의 UV-B 조건인 $13.6\;KJ\;m^{-2}\;day^{-1}$ 배치구에서 이산화티탄 처리로 종가하였고 UV-B 4.9, 0.6, $0.15\;KJ\;m^{-2}\;day^{-1}$ 배치구는 다소 증가하였으나 통계적으로 유의한 차이는 나타내지 않았다. 5. 이산화티탄 처리 후 자연광 중의 UV-B를 99% 차단하여 저수준으로 조절한 결과 68%의 단백질 발현이 감소하였고 각각 16%의 단백질 발현이 증가 또는 신생 합성되었다. 6. 이산화티탄 20 ppm 처리 후 자연광 중의 UV-B를 99% 차단시켰을 때 주로 광합성 Calvin cycle에서 $CO_2$ 결합을 촉매하는 결정구조 Rubisco의 chain E 발현이 감소하였다.

Keywords

References

  1. Anandan, S. and M. J. Yoon. 2003. Heteropolyacid-encapsulated TiHY zeolite as an inorganic photosynthetic reaction center mimicking the plant systems. Journal of Photochemistry and Photobiology A:Chemistry. 160 : 181-184 https://doi.org/10.1016/S1010-6030(03)00210-7
  2. Andersson, I. 1996. Large Structures at High Resolution ; The 1.6 ${\AA}$ Crystal Structure of Spinach Ribulose-1,5-Bispho­sphate Carboxylase/Oxygenase Complexed with 2-Carbo­xyarabinitol Bisphosphate. Journal of Molecular Biology. 259(1) : 160-174 https://doi.org/10.1006/jmbi.1996.0310
  3. Angela, G., N. Rincon, C. Pulgarin, N. Adler, and P. Peringer. 2001. Interaction between E. coli and DBP-precursors­dihydroxybenzen isomers in the photocatalytic process of drinking-water disinfection with $TiO_{2}$ . Journal of Photo­chemistry and Photobiology. A : Chemistry. 139(2-3) : 233­-241 https://doi.org/10.1016/S1010-6030(01)00374-4
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72 : 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Chen, D. and A. K. Ray. 1998. Photodegradation kinetics of 4-nitrophenol in $TiO_{2}$ suspension. Water Research. 32 : 3223-3234 https://doi.org/10.1016/S0043-1354(98)00118-3
  6. De Carvalho, F., G. Gheysen, S. Kushnir, M. Van Montagu, D. Inze, and C. Castresana. 1992. Suppression of ${\beta}$-1, 3-­glucanase transgene expression in homozygous plants. Euro­pean Molecular Biology Organization Journal. 11 : 2595-­2602
  7. Fujishima, A., T. N. Qao, and D. A. Tryk. 2000. Titanium dioxide photocatalysis. Journal of Photochemistry and Photo­biology C : Photochemistry Reviews 1 ; 1-21 https://doi.org/10.1016/S1389-5567(00)00002-2
  8. Gleiter, H. M. and G. Rengr. 1993. A simple fluorometric detection of photo system II inhibitors. pp. 69-74 in Boger and G. Sandmann, ed. Target Assay for Modem Herbicides and Related Phytotoxic Compounds. Lewis Pub. New York
  9. Grossman, A. R., D. Bhaya, K. E. Apt, and D. M. Kehoe. 1995. Light-harvesting complexes in oxygenic photosynthesis : diversity, control and evolution. Annual Review of Genetics. 29 : 231-288 https://doi.org/10.1146/annurev.ge.29.120195.001311
  10. Houtz, R. L. and A. R. Potris Jr. 2003. The life of ribulose 1,5-bisphosphate carboxylase/oxygenase-posttranslational facts and mysteries. Archives of Biochemistry and Biophysics 414 : 150-158 https://doi.org/10.1016/S0003-9861(03)00122-X
  11. Hur, J. S., S. O. Oh, K. M. Lim, J. S. Jung, J. W. Kim, and Y. J. Koh. 2005. Novel effects of $TiO_{2}$ photocatalytic ozo­nation on control of postharvest fungal spoilage of kiwi­fruit. Postharvest Biology and Technology. 35 : 109-113 https://doi.org/10.1016/j.postharvbio.2004.03.013
  12. Koide, S. and T. Nonami. 2007. Disinfecting efficacy of a plastic container covered with photocatalyst for postharvest. Food Control. 18 : 1-4 https://doi.org/10.1016/j.foodcont.2005.08.001
  13. Miziorko, H. M and Lorimer, G. H. 1983. Ribulose bispho­sphate carboxylase oxygenase. Annual Review of Bioche­mistry. 52 : 507-535 https://doi.org/10.1146/annurev.bi.52.070183.002451
  14. Mizohata, E., H. Matsumura, Y. Okanp, M. Kumei, H. Takuma, J. Onodera, K. Kato, N. Shibata, T. Inoue, A. Y okoda, and Y. Kai. 2002. Journal of Molecular and Biology. 316 : 679-691 https://doi.org/10.1006/jmbi.2001.5381
  15. Nordenkampe, B., S. P. Long, N. R. Baker, G. Oquist, U. Schreiber, and E. G. Lechner. 1989. Chorophyll fluorescence as a probe of the photostynthetic competence of leaves in the field : A review of current instrumentation. Functional Ecology. 3 : 497-514
  16. Pandey, A. and M. Mann. 2000. Proteomics to study genes and genomes. Nature. 405 : 837-846 https://doi.org/10.1038/35015709
  17. Parry, M. A. J., P. J. Andralojc, S. Parmar, A. J. Keys, D. Habash, M. J. Paul, R. Alred, W. P, Quick, and J. C. Servaties. 1997. Regulation of Rubisco by inhibitors in the light. Plant, Cell and Environment. 20 : 528-534 https://doi.org/10.1046/j.1365-3040.1997.d01-85.x
  18. Pierce, J., N. E. Tolbert, and Barker. R. 1980. Interaction of ribulose bisphosphate carboxylase/oxygenase with transition­state analoge. Biochemistry. 19 : 934-942 https://doi.org/10.1021/bi00546a018
  19. Santos, I., F. Fialgo, J. A. Almeida, and R. S. Alema. 2004. Biochemical and ultrastructual change in leaves of potato plants grown under supplementary UV-B radiation. Plant Science. 167 : 925-935 https://doi.org/10.1016/j.plantsci.2004.05.035
  20. Sayama, K., K. Mukasa, R. Abe, Y. Abe, and H. Arakawa. 2002. A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. Journal of photochemistry and Photobiology. A : Chemistry. 148 ; 71-77 https://doi.org/10.1016/S1010-6030(02)00070-9
  21. Sayed, O. H. 2003. Chlorophyll flurorescence as a tool in cereal crop research. Photosynthetica. 41 : 321-330 https://doi.org/10.1023/B:PHOT.0000015454.36367.e2
  22. Schreuder, H. A., Knight. S, Curmi. P. M. G., Andersson. I., Cascio. D., Sweet, R., Branden. C. I., and Eisenberg. D. 1993. Crystal structure of activated tabacco rubisco com­plexed with the reaction-intermediated analogue 2-carboxyl­-arabinitol 1,5-bisphosphate. Protein Science. 2 : 1136-1145 https://doi.org/10.1002/pro.5560020708
  23. Seven, O., B. Dindar, S. Aydemir, D. Metin, M. A. Ozinel, and S. Icli. 2004. Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with $TiO_{2}$, ZnO and Sahara desert dust. Journal of Photochemistry and Photobiology. A : Chemistry. 165 : 103-107 https://doi.org/10.1016/j.jphotochem.2004.03.005
  24. Spreitzer, R. J. 1998. Genetic engineering of rubisco. In the molecular biology of Chloroplasts and Mitochondria in Chlamydomonas. pp. 515-527, Kluwer Academic Publishers, Netherlands
  25. Wubben, J. P., M. H. A. J. Joosten, V. K. JAL, and M. D. Wit. 1992. Subcellular localization of plant chitinases and 1, 3-${\beta}$-glucanases in Cladosporium fulvum (syn. Fuvia fulva)-­infected tomato leaves. Physiological and Molecular Plant Pathology. 41 : 23-32 https://doi.org/10.1016/0885-5765(92)90046-X