• Title/Summary/Keyword: Groundwater storage

Search Result 276, Processing Time 0.025 seconds

A Comparison Study of Alkalinity and Total Carbon Measurements in $CO_2$-rich Water (탄산수의 알칼리도 및 총 탄소 측정방법 비교 연구)

  • Jo, Min-Ki;Chae, Gi-Tak;Koh, Dong-Chan;Yu, Yong-Jae;Choi, Byoung-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.1-13
    • /
    • 2009
  • Alkalinity and total carbon contents were measured by acid neutralizing titration (ANT), back titration (BT), gravitational weighing (GW), non-dispersive infrared-total carbon (NDIR-TC) methods for assessing precision and accuracy of alkalinity and total carbon concentration in $CO_2$-rich water. Artificial $CO_2$-rich water(ACW: pH 6.3, alkalinity 68.8 meq/L, $HCO_3^-$ 2,235 mg/L) was used for comparing the measurements. When alkalinity measured in 0 hr, percent errors of all measurement were 0~12% and coefficient of variation were less than 4%. As the result of post-hoc analysis after repeated measure analysis of variance (RM-AMOVA), the differences between the pair of methods were not significant (within confidence level of 95%), which indicates that the alkalinity measured by any method could be accurate and precise when it measured just in time of sampling. In addition, alkalinity measured by ANT and NDIR-TC were not change after 24 and 48 hours open to atmosphere, which can be explained by conservative nature of alkalinity although $CO_2$ degas from ACW. On the other hand, alkalinity measured by BT and GW increased after 24 and 48 hours open to atmosphere, which was caused by relatively high concentration of measured total carbon and increasing pH. The comparison between geochemical modeling of $CO_2$ degassing and observed data showed that pH of observed ACW was higher than calculated pH. This can be happen when degassed $CO_2$ does not come out from the solution and/or exist in solution as $CO_{2(g)}$ bubble. In that case, $CO_{2(g)}$ bubble doesn't affect the pH and alkalinity. Thus alkalinity measured by ANT and NDIR-TC could not detect the $CO_2$ bubble although measured alkalinity was similar to the calculated alkalinity. Moreover, total carbon measured by ANT and NDIR-TC could be underestimated. Consequently, it is necessary to compare the alkalinity and total carbon data from various kind of methods and interpret very carefully. This study provide technical information of measurement of dissolve $CO_2$ from $CO_2$-rich water which could be natural analogue of geologic sequestration of $CO_2$.

Drilling and Completion of CO2 Injection Well in the Offshore Pohang Basin, Yeongil Bay (포항분지 해상 CO2 주입정 시추 완결 및 구축)

  • Won, Kyoung-Sik;Lee, Dae-Sung;Kim, Sang-Jun;Choi, Seong-Do
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.193-206
    • /
    • 2018
  • In this study, as part of the "Small-scale $CO_2$ Injection-Demonstration Project in Offshore Pohang Basin", we performed drilling and completion of a $CO_2$ injection well from the offshore platform installed in the Yeongil Bay, Pohang city, Gyeongsang buk-do. The drilling of injection well was carried out from an offshore platform installing on the sediment formations of the Pohang Basin. Drilling diameters were reduced by stages, depending on the formation pressure and groundwater pressure along a depth and the casing installation and cement grouting in drilled hole were performed at each stage. The injection well was drilled to a final depth of 816.5 m with a hole diameter of 4 7/8 inches (${\Phi}124mm$) and the perforated casing for an injection section was installed in a depth of 746.5~816.5 m. Injection tubing, packer, and christmas tree were installed for the completion of an injection well for $CO_2$. The validation project of the $CO_2$ injection was accomplished successfully by drilling the injection well and installing the injection facilities, and through the suitable $CO_2$ injection process. The current injection facility is a facility for small-scale injection demonstration of 100 tons. In the case of large-scale demonstration facility test of a capacity of 10,000 tons, research is underway through the upgrading of the injection facilities.

Investigation on Hydraulic Properties According to Artificial Recharge and Extraction (인공 하수 주입 및 양수에 따른 대수층의 수리학적 특성 연구)

  • Kang, Jeong-Ok;Lee, So-Jung;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.995-1005
    • /
    • 2005
  • The study with laboratory sandbox model has been carried out to address potential use of reclaimed water, as a countermeasure artificially recharging the coastal aquifer, to effectively prevent from seawater intrusion due to overexploitation. It also investigated plausibility for either preserving or recovering the freshwater interface facing with seawater intrusion. To do this, we assessed hydraulic properties in artificial aquifer seawater/freshwater interface) depending upon the variation of extraction, storage and injection of reclaimed water. The variation of interface between freshwater and seawater were visualized by Surfer 8(Golden Software, USA) according to given experimental conditions. The interface between seawater and freshwater has been sensitively influenced by the change of extraction rate, where seawater zone migrated much faster into freshwater zone even though extraction rate became decreased. However, decreasing recharge rate could slow down moving of saline water zone toward freshwater zone. When the recharge was solely introduced into the sand box model, saline water intrusion was retarded than those of recharge and extraction working together. And also, the level of salinity of saline water was diluted by artificial recharge. It finally revealed that the artificial recharge would hydraulically avoid seawater intrusion while the freshwater sources could be conservatively utilized.

The Change of Water Balance due to Urbanization in Gwangju River Basin (도시화에 수반되는 광주천 유역의 물수지 변화)

  • Yang, Hea-Kun;Kim, Jong-Il
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.1
    • /
    • pp.192-205
    • /
    • 2004
  • The purpose of this paper is to analyze the factors, which have influence upon changes of hydrological environment in time series, and evaluate water balance changes caused by urbanization. The results of the analysis and evaluation are as follow: At first, the river runoff at Gwangju River Basin keep base flow of river by storage capacity recharged in June to September and show peak in August and minimum flow in May. The groundwater recharge by urbanization accounted for 46.1% of rainfall at early-urban stage, and decreased to 36.5% and 29.9% in the 1960's and the 1990's respectively, and is likely to decrease to 27.8% in the 2010's. On the other hand, the overland flow was 9.6% of rainfall in the 1960's and 16.2% in the 1990's, and is likely to increase to 18.3% in the 2010's. When such a phenomenon is kept continuously, distorted water balance shall be worsened to create not only frequent occurrence of urban flood but also decreased base flow of Gwangju River to accelerate dry stream phenomenon. The time series study on urban redevelopment and environment maintenance describes distorted phenomenon to supply the information for nature-friendly land use, and examines relations between human activities and natural environment.

  • PDF

Development of Rainfall - Delayed Response Model for the Calculation of Baseflow Proportion (기저유출량추정을 위한 강우 지연반응모형 개발)

  • 홍종운;최예환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.31-43
    • /
    • 1988
  • The Purpose of this study is to develop the rainfall-delayed response model (RDR Model) which influences the baseflow proportion of rivers as a result of the antecedent precipitation of the previous several months. The assesment of accurate baseflows in the rivers is one of the most important elements for the planning of seasonal water supply for agriculture, water resources development, hydrological studies for the availability of water and design criteria for various irrigation facilities. The Palukan river gauging site which is located in the Pulukan catchment on Bali Island, Indonesia was selected to develop this model. The basic data which has been used comprises the available historic flow records at 19 hydrologic gauging stations and 77 rainfall stations on Bali Island in the study. The methology adopted for the derivation of the RDR model was the water balance equation which is commonly used for any natural catcbment ie.P=R+(catchment losses) -R+(ET+DP+DSM+DGW). The catchment losses consist of evapotranspiration, deep percolation. change in soil moisture, and change in groundwater storage. The catchment areal rainfall has been generated by applying the combination method of Thiessen polygon and Isohyetal lines in the studies. The results obtained from the studies may be summarized as follows ; 1. The rainfall-runoff relationship derived from the water balance equation is as shown below, assuming a relationship of the form Y=AX+B. Finally these two equations for the annual runoff were derived ; ARO$_1$=0.855 ARF-821, ARF>=l,400mm ARO$_2$=0.290ARF- 33, ARF<1,400mm 2. It was found that the correction of observed precipitation by a combination of Thiessen polygons and Isohyetal lines gave good correlation. 3. Analysis of historic flow data and rainfall, shows that surface runoff and base flow are 52 % and 48% (equivalent to 59.4 mm) of the annual runoff, respectively. 4. Among the eight trial RDR models run, Model C provided the correlation with historic flow data. The number of months over which baseflow is distributed and the relative proportions of rainfall contributing in each month, were estimated by performing several trial runs using data for the Pulukan catchment These resulted in a value for N of 4 months with contributing proportions of 0.45, 0.50, 0.03 and 0.02. Thus the baseflow in any month is given by : P$_1$(n) =0.45 P(n) +0.50 P(n-I ) +0.03 P(n-$_2$) +0.02 P(n-$_3$) 5. The RDR model test gave estimated flows within +3.4 % and -1.0 % of the observed flows. 6. In the case of 3 consecutive no rain months, it was verified that 2.8 % of the dependable annual flow will be carried over the following year and 5.8 % of the potential annual baseflow will be transfered to the next year as a result of the rainfall-delayed response. The results of evaluating the pefformance of the RDR Model was generally satisfactory.

  • PDF

Anaerobic dechlorinating enrichment culture on tetrachloroethene (PCE) (PCE 탈염소화를 위한 혐기성배양)

  • Kim, Byung-Hyuk;Baek, Kyung-Hwa;Sung, Youl-Boong;Choi, Gang-Kook;Cho, Dae-Hyun;Oh, Hee-Mock;Kim, Hee-Sik
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.185-185
    • /
    • 2007
  • Starting at the beginning q the 20th century, increasing amounts of tetrach1oroethene (PCE) and trichloroethene (TCE)were manufactured due to the extensive use of these compounds in industry, in the military, and in private households, mainly as nonflammable solvents. This widespread use, along with careless handling and storage, are among the most serious contaminants of soil, sediment and groundwater. Highly chlorinated ethenes are typically not degraded through oxygenation by aerobic bacteria Since complete reductive dechlorination of PCE and TCE to ethene (ETH) has been observed in anaerobic enrichment culture, anaerobic dehalorespiring bacteria have received increased attention in the last decade. Under anaerobic conditions, these compounds con be reductively dehalogenated to less-chlorinated ethenes or innocuous ethene by microorganism through dehalorespiration. We have been studying anaerobic enrichment culture which used lactate as the electron donor for reductive dechlorination of PCE to ETH the anaerobic mixed microbial culture was enriched from the sediment sample taken from site contaminated with PCE. PCE was consistently and completely converted to ethene. In addition, the accumulation of intermediate products such as 1,2-ds-dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the anaerobic mixed microbial culture. the established dechlorinating enrichment culture was analyzed by DGGE using primers specific to DefrJ1ococcoides 16S rRNA gene sequences. In conclusion, we established the PCE dechlorinating enrichment culture and confirmed the existence of Dehalococcoides in an enrichment culture.

  • PDF

The Development of Multi-channel Electrical Conductivity Monitoring System and its Application in the Coastal Aquifer (다채널 전기전도도 모니터링 시스템의 개발과 연안지역 공내수 모니터링에 대한 적용 사례)

  • Shin, Je-Hyun;Hwang, Se-Ho;Park, Kwon-Gyu;Park, Yun-Seong;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.156-162
    • /
    • 2005
  • Particularly in research related to seawater intrusion the change of fluid electrical conductivity is one of major concerns, and effective monitoring can help to optimize a water pumping performance in coastal areas. Special considerations should be given to the mounting of sensors at proper depth during the monitoring design since the vertical distribution of fluid electrical conductivity is sensitive to the characteristics of seawater intrusion zone. This tells us the multi-channel electrical conductivity monitoring is of paramount consequence. It, however, is a rare event when this approach becomes routinely available in that commonly used commercial stand-alone type sensors are very expensive and inadequate for a long term monitoring of electrical conductivity or water level due to their restricted storage and difficulty of real-time control. For this reason, we have developed a real-time monitoring system that could meet these requirements. This system is user friendly, cost-effective, and easy to control measurement parameters - sampling interval, acquisition range, and others. And this devised system has been utilized for the electrical conductivity monitoring in boreholes, Yeonggwang-gun, Korea. Monitoring has been consecutively executed for 24 hours, and the responses of electrical conductivity at some channels have been regularly increased or decreased while pumping up water. It, with well logging data implemented before/after pumping water, verifies that electrical conductivity changes in the specified depths originate from fluid movements through sand layer or permeable fractured rock. Eventually, the multi-channel electrical conductivity monitoring system makes an effective key to secure groundwater resources in coastal areas.

Monitoring of Fracture Occurrence During Carbon Dioxide Injection at the Meruap Oil Reservoir, Indonesia (인도네시아 머루압 유전에 이산화탄소 주입 시 균열대 생성 여부 모니터링)

  • Kim, Dowan;Byun, Joongmoo;Kim, Kiseog;Ahn, Taewoong
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • $CO_2$-EOR (Carbon Dioxide-Enhanced Oil Recovery), one of the enhanced oil recovery methods, helps to not only enhance the production of oil, but also store carbon dioxide in underground. However, if micro fractures occur when during the injection of $CO_2$, it is difficult to make permanent storage of $CO_2$ in reservoir and can cause contamination of groundwater and soil. Therefore, in this study, we performed microseismic monitoring to investigate the occurrence of fractures during the $CO_2$ injection at the Meruap oil reservoir, Indonesia. To pick the first arrivals of microseismic events, Improved MER (Modified Energy Ratio) method was used. After picking the first arrivals, hodogram analysis was carried out by using the data recorded at three component geophones to calculate the back azimuth of events. Finally, locations of microseismic events were decided by using the results of first arrival picking and hodogram analysis. Estimated locations showed that all microseismic events were occurred at surface and any fracture did not occur around the reservoir. Moreover, by analyzing noise characteristic, we confirmed that almost of picked first arrivals were due to the repetitive mechanical noise.

Development of small constructed wetland for urban and roadside areas (도시 및 도로 조경공간을 활용한 소규모 인공습지 조성 기술)

  • Kang, Chang-Guk;Maniquiz, Marla C.;Son, Young-Gyu;Cho, Hye-Jin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.231-242
    • /
    • 2011
  • Recently, the green spaces in the urban areas were greatly reduced due to urbanization and industrialization. As urban structures such as roads and buildings are built, the amount of impervious area within a watershed increases. High impervious surfaces are the common causes of high runoff volumes as the soil infiltration capacity decreases and the volume and rate of runoff increase thereby decreasing the groundwater recharge. These effects are causing many environmental problems, such as floods and droughts, climate change, heat island phenomenon, drying streams, etc. Most cities attempted to reduce sewer overflows by separating combined sewers, expanding treatment capacity or storage within the sewer system, or by replacing broken or decaying pipes. However, these practices can be enormously expensive than combined sewer overflows. Therefore, in order to improve these practices, alternative methods should be undertaken. A new approach termed as "Low Impact Development (LID)" technology is currently applied in developed countries around the world. The purpose of this study was to effectively manage runoff by adopting the LID techniques. Small Constructed Wetland(Horizontal Subsurface Flow, HSSF) Pilot-scale reactors were made in which monitoring and experiments were performed to investigate the efficiency of the system in removing pollutants from runoff. Based on the results of the Pilot-plant experiments, TSS, $COD_{Cr}$, TN, TP, Total Pb removal efficiency were 95, 82, 35, 91 and 57%, respectively. Most of the pollutants were reduced after passing the settling tank and the vertical filter media. The results of this study can contribute to the conservation of aquatic ecosystems and restoration of natural water cycle in the urban areas.

Assessment of Agricultural Water Supply Capacity Using MODSIM-DSS Coupled with SWAT (SWAT과 MODSIM-DSS 모형을 연계한 금강유역의 농업용수 공급능력 평가)

  • Ahn, So Ra;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.507-519
    • /
    • 2013
  • This study is to evaluate agricultural water supply capacity in Geum river basin (9,865 $km^2$), one of the 5 big river basin of South Korea using MODSIM-DSS (MODified SIMyld-Decision Support System) model. The model is a generalized river basin decision support system and network flow model developed at Colorado State University designed specifically to meet the growing demands and pressures on river basin management. The model was established by dividing the basin into 14 subbasins and the irrigation facilities viz. agricultural reservoirs, pumping stations, diversions, culverts and groundwater wells were grouped and networked within each subbasin and networked between subbasins including municipal and industrial water supplies. To prepare the inflows to agricultural reservoirs and multipurpose dams, the Soil and Water Assessment Tool (SWAT) was calibrated using 6 years (2005-2010) observed dam inflow and storage data. By MODSIM run for 8 years from 2004 to 2011, the agricultural water shortage had occurred during the drought years of 2006, 2008, and 2009. The agricultural water shortage could be calculated as 282 $10^6m^3$, 286 $10^6m^3$, and 329 $10^6m^3$ respectively.