• Title/Summary/Keyword: Groundwater Pollution

Search Result 355, Processing Time 0.038 seconds

Microbial Community Structures Related to Arsenic Concentrations in Groundwater Occurring in Haman Area, South Korea (함안지역 지하수의 비소(As) 함량과 미생물 군집 특성과의 연관성 검토)

  • Kim, Dong-Hun;Moon, Sang-Ho;Ko, Kyung-Seok;Kim, Sunghyun
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.655-666
    • /
    • 2020
  • This study evaluated the characteristics of arsenic production in groundwater through microbial community analysis of groundwater contaminated with high arsenic in Haman area. Groundwater in Haman area is contaminated with arsenic in the range of 0-757.2 ㎍/L, which represents the highest arsenic contamination concentration reported in Korea as natural groundwater pollution source. Of the total 200 samples, 29 samples (14.5%) showed higher arsenic concentration than that of 10 ㎍/L, which is the standard for drinking water quality, and 8 samples (4%) found in wells with 80-100 m depth were above 50 ㎍/L. In addition, seven wells with arsenic concentration more than 100 ㎍/L located in the northern part of Haman. As a result of microbial community analysis for high arsenic-contaminated groundwater, the microbial community compositions were significantly different between each sample, and Proteobacteria was the most dominant phyla with an average of 61.5%. At the genus level, the Gallinonella genus was predominant with about 12.8% proportion, followed by the Acinetobacter and Methermicoccus genus with about 7.8 and 7.3%, respectively. It is expected that high arsenic groundwater in the study area was caused by a complex reaction of geochemical characteristics and biogeochemical processes. Therefore, it is expected that the constructed information on geochemical characteristics and microbial communities through this study could be used to identify the origin of high arsenic groundwater and the development of its controlling technology.

Fraction and Geoaccumulation Assessment Index of Heavy Metals in Abandoned Mines wastes (휴폐광산 지역에서 폐석의 중금속 존재 형태와 지화학적농축계수 평가)

  • Kim Hee-Joung;Park Byung-Kil;Kong Sung-Ho;Lee Jai-Young;Ok Yong-Sik;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.75-80
    • /
    • 2005
  • Several metalliferous including Guedo mine, Manjung mine and Joil mine located at the upper watershed of Namhan river, were abandoned or closed since 1988 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in soil pollution. In this research, total and fractional concentrations of heavy metals in mining wastes were analyzed and accordingly the degree of soil pollutions in the abandoned mine area were quantitatively assessed employing the several pollution indices. The mining waste samples from Guedo mine, Manjung mine and Joil mine recently abandoned were collected for the evaluation of the potential of water pollution by mining activities. Index of geoaccumulation fractional composition and removal efficiency of some heavy metals by different concentration of HCl treatment were analyzed. Index of geoaccumulation of Cd, Pb, Zn, Cu, Ni and Cr are 6, $4\~6,\;0\~6,\;4\~5$, 2 and 0 respectively. The index of geoaccumulation of Cd, Pb, Zn and Cu reveals the mining wastes has high pollution potential in the area. According to sequential extraction of metals in the mine wastes organic fraction of Cu, reducible fraction of Pb, residual fraction of Ni and Zn were the most abundant fraction of heavy metals in mining wastes.

Characterization of Microbial Communities in a Groundwater Contaminated with Landfill Leachate using a Carbon Substrate Utilization Assay (탄소원 이용도 평가를 활용한 매립지 침출수로 오염된 지하수의 미생물 군집 특성 해석)

  • Koo, So-Yeon;Kim, Ji-Young;Kim, Jai-Soo;Go, Kyung-Seok;Lee, Sang-Don;Cho, Kyung-Suk;Go, Dong-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.20-26
    • /
    • 2007
  • The microbial community properties of groundwater samples contaminated with landfill leachates were examined using Ecoplate including 31 sole carbon sources. The samples were KSG1-12 (leachate), KSG1-16 (treated leachate), KSG1-07 (contaminated groundwater), KSG1-08 (contaminated groundwater), and KSG1-13 (uncontaminated groundwater). Among the carbon sources used as substrates, 2-hydroxy benzoic acid, D,L-$\alpha$-glycerol phosphate, and D-malic acid were not utilized in any sample, while D-xylose, D-galacturonic acid, L-aspargine, tween 80, and L-serine were utilized in all 5 samples. The rest of substrates showed very different patterns among the samples. Average well color development (AWCD) analysis demonstrated that the potential activity on 31 substrates was in the order of KSG1-16 > KSG1-12 > KSG1-07 > KSG-08 > KSG1-13, which generally agrees with the degree of pollution, except KSG1-16. Principal component analysis (PCA) on similarity between samples showed two groups (KSG1-12, -07 and -08 vs KSG1-16 and -13), coinciding with contaminated and uncontaminated groups. Shannon index showed that the microbial diversities were similar among the samples.

Geochemical Characteristics and Nitrates Contamination of Shallow Groundwater in the Ogcheon Area (옥천지역 천부지하수의 지구화학적 특성 및 질산염 오염 특성)

  • Lee, In-Gyeong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.43-52
    • /
    • 2010
  • The geochemical and nitrogen isotopic analyses for shallow groundwater of Ogcheon area were carried out to characterize the geochemical characteristics of the groundwater and to identify the source of nitrate. Groundwater shows a neutral pH to weakly alkalic condition with pH values ranging from 6.9 to 8.4. The average of EC, Eh and DO is $344.2\;{\mu}s/cm$, 195 mV, 4 mg/L, respectively. According to piper diagram, chemical composition of groundwater is dominantly characterized by Ca-$HCO_3$ type. On the other hand, groundwater type in the study area include Ca-Cl+$NO_3$ type that were highly influenced by agricultural activities. $NO_3$-N concentration of the collected samples(n=45) range from 12.4 to 34.2 mg/l. These data show that the $NO_3$-N concentration exceeds Korea Drinking Water Standard (10 mg/l). The $\delta^{15}N-NO_3$ values range from $2.7^{\circ}/_{\circ\circ}$ to $18.8^{\circ}/_{\circ\circ}$. The enrichments of heavy isotope in the groundwater indicate that major origin of nitrate pollution were associated with animal and human waste. Also the denitrification may have partly contributed as one of the sources of nitrogen.

A proposal of unit watershed for water management based on the interaction of surface water and groundwater (지표수-지하수 연계 기반의 통합수자원 관리를 위한 단위유역 제안)

  • Kim, Gyoo-Bum;Hwang, Chan-Ik
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.spc1
    • /
    • pp.755-764
    • /
    • 2020
  • In South Korea, 850 standard watersheds and 7,807 KRF catchment areas have been used as basic maps for water resources policy establishment, however it becomes necessary to set up new standard maps with a more appropriate scale for the integrated managements of surface water-groundwater as well as water quantity-quality in the era of integrated water management. Since groundwater has a slow flow velocity and also has 3-D flow properties compared to surface water, the sub-catchment size is more effective than the regional watershed for the evaluation of surface water-groundwater interaction. The KRF catchment area, which has averagely a smaller area than the standard watershed, is similar to the sub-catchment area that generally includes the first-order or second-order tributaries. Some KRF catchment areas, which are based on the surface reach, are too small or large in a wide plain or high mountain area. Therefore, it is necessary to revise the existing KRF area if being used as a unit area for integrated management of surface-water and groundwater. A unit watershed with a KRF area of about 5 to 15 ㎢ can be effective as a basic unit for water management of local government considering a tributary composition and the location of groundwater wells, and as well it can be used as a basic tool for water demand-supply evaluation, hydrological observation system establishment, judgment of groundwater permission through a total quantity management system, pollution assessment, and prioritizing water policy, and etc.

Evaluation for Impacts of Nitrogen Source to Groundwater Quality in Livestock Farming Area

  • Lee, Gyeong-Mi;Park, Sunhwa;Kim, Ki-In;Jeon, Sang-Ho;Song, Dahee;Kim, Deok-hyun;Kim, Tae-Seung;Yun, Seong-Taek;Chung, Hyen Mi;Kim, Hyun-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.345-356
    • /
    • 2017
  • We investigated 52 livestock farming complexes in Gyeong-Gi and Incheon provinces based on low, medium, and high livestock density and groundwater quality. The objective of this study was to evaluate a relationship between nitrate N concentration in groundwater and animal factors, such as livestock density and animal species. 2,200 groundwater samples for 3 years from 2012 to 2014 at Gyeong-Gi and Incheon provinces were collected and analyzed for pH, EC, DO, ORP, temperature, major anions and cations, such as $NO_3-N$, ${HCO_3}^-$, ${PO_4}^-$, ${SO_4}^{2-}$, $Cl^-$, $NH_4-N$, $K^+$, $Na^+$, $Ca^{2+}$, $Mg^{2+}$, T-N, and TOC. Average concentration of total N for generated load density was $23,973g\;day^{-1}\;km^{-2}$ for cattle, $51,551g\;day^{-1}\;km^{-2}$ for pig, and $52,100g\;day^{-1}\;km^{-2}$ for poultry. For animal feeding species, average ratio for generated load over discharge load was 16.1% for cattle, 7.8% for pig, and 7.1% for poultry. Therefore, cattle feeding region is highly vulnerable for water pollution compared to pig and poultry feeding areas. The concentrations of chloride, nitrate, and total N in the groundwater samples were higher at high animal farming regions than other regions. The average concentration of nitrate, and chloride in groundwater samples was $5.0mg\;L^{-1}$, $16.6mg\;L^{-1}$ for low livestock density, $6.9mg\;L^{-1}$, $17.7mg\;L^{-1}$ for medium livestock density and $7.6mg\;L^{-1}$, $22.7mg\;L^{-1}$ for high livestock density and total nitrogen (T-N) was $7.7mg\;L^{-1}$ for low livestock density, $9.4mg\;L^{-1}$ for medium livestock density, $10.7mg\;L^{-1}$ for high livestock density. In conclusion, based on this research, for managing groundwater quality near livestock farming regions, $Ca-(Cl+NO_3)$ group from the Piper diagram is more efficient than using 19 factors for water quality standard.

Water Resources Evaluation in the Philippines (필리핀의 수자원 평가)

  • Rubio, Christabel Jane;Lee, Joo Heon;Jeong, Sang Man
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.47-56
    • /
    • 2008
  • This paper sought to provide information regarding the water resources in the Philippines, focusing on the issues of water quality, status of water use and water scarcity, and other threats to water availability. Although the country has sufficient amount of water resources, it was found out that water availability is still threatened by some major water resources problems: increasing water demand due to drastic growth in population, water resources pollution, droughts and flooding and weak institutional framework to address these problems. Water quality problems include increasing groundwater and surface water pollution. Moreover, drought and flooding have also increased damages in recent years due to deteriorating watersheds and high economic and population growth. In relation to these, the government enacted national laws to define and deal with water control and quality management. The objective of this research was to present and evaluate current conditions and issues on Philippine water resources.

  • PDF

The State of Water Resources in the Philippines

  • Rubio, Christabel Jane P.;Jeong, Sang-Man;Lee, Joo-Heon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.82-91
    • /
    • 2008
  • This paper sought to provide information regarding the water resources in the Philippines, focusing on the issues of water quality, status of water use and water scarcity, and other threats to water availability. Although the country has sufficient amount of water resources, it was found out that water availability is still threatened by some major water resources problems: increasing water demand due to drastic growth in population, water resources pollution, droughts and flooding and weak institutional framework to address these problems. Water quality problems include increasing groundwater and surface water pollution. Moreover, drought and flooding have also increased damages in recent years due to deteriorating watersheds and high economic and population growth. In relation to these, the Government enacted national laws to define and deal with water control and quality management. The objective of this research was to present and evaluate current conditions and issues on Philippine water resources.

  • PDF

Simultaneous Analysis of 13 Pesticides in Groundwater and Evaluation of its Persistent Characteristics

  • Song, Dahee;Park, Sunhwa;Jeon, Sang-Ho;Kim, Ki-In;Hwang, Jong Yeon;Kim, Moonsu;Jo, Hun-Je;Kim, Deok-hyun;Lee, Gyeong-Mi;Kim, Hye-Jin;Kim, Tae-Seung;Chung, Hyen Mi;Kim, Hyun-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.434-451
    • /
    • 2017
  • For this study, groundwater samples for 3 years from 2011 through 2013 were collected at 106 groundwater monitoring site in Korea. These groundwater samples were analyzed for 13 pesticides such as cabofuran, pentachlorobenzene, hexachlorobenzene, simazine, atrazine, lindane (gamma-HCH), alachlor, heptachlor, chlordane (total), endosulfan (1, 2), dieldrin, endrin, 4,4-DDT. The objectives of this study were to determine the detection frequency and their concentrations of 13 pesticides and evaluate the health risk level considering ingestion, inhalation, and skin contact using concentrations of 13 pesticides in groundwater samples. An analysis was used for the simultaneous determination for 13 pesticides using GC-MS. GC-MS was performed on HP-5ms, using helium ($1ml\;min^{-1}$) as carrier gas. The average recoveries of the pesticides were from 92.8% to 120.8%. The limits of detection (LODs) were between $0.004{\mu}g\;L^{-1}$ and $0.118{\mu}g\;L^{-1}$ and the limits of quantification (LOQs) were between $0.012{\mu}g\;L^{-1}$ and $0.354{\mu}g\;L^{-1}$. 106 groundwater wells were selected. 54 wells were from well to monitor background groundwater quality and 52 wells were from well to monitor groundwater quality in industrial or contamination source area. Eight pesticides including pentachlorobenzene, lindane (Gamma-HCH), heptachlor, chlordane (total), Endosulfan (1, 2), dieldrin, endrin, and 4,4-DDT were not detected in groundwater samples. The detection frequency for hexachlorobenzene, alachlor, carbofuran and simazine was 23.4%, 11.4%, 7.3%, and 1.0%, respectively. Atrazine was detected once in 2011. The average concentrations were $0.00423{\mu}g\;L^{-1}$ for carbofuran, $0.000243{\mu}g\;L^{-1}$ for alachlor, $0.00015{\mu}g\;L^{-1}$ for simazine, and $0.00001{\mu}g\;L^{-1}$ for hexachlorobenzene. The detection frequency of hexachlorobenzene was high, but the average concentration was low. In the contaminated groundwater, the detection frequency for hexachlorobenzene, alachlor, carbofuran, simazine and atrazine was 26.1%, 21.3%, 7.1%, 1.9% and 0.3%, respectively. In the uncontaminated groundwater, detection frequency for hexachlorobenzene, carbofuran and alachlor were 20.2%, 7.5%, and 1.9% respectively. Simazine and atrazine were not detected at uncontaminated groundwater wells. According to the purpose of groundwater use, atrazine was detected for agricultural groundwater use. Hexachlorobenzene showed high detection frequency at agricultural groundwater use area where the animal feeding area and golf course area were located. Alachlor showed more than 50% detection frequency at cropping area, pollution concern river area, and golf course area. Atrazine was detected in agricultural water use area. By land use, the maximum detection frequency of alachlor was found near an orchard. For human risk assessment, the cancer risk for the 5 pesticides was between $10^{-7}$ and $10^{-10}$, while the non-cancer risk (HQ value) was between $10^{-4}$ and $10^{-6}$. For conclusion, these monitoring study needs to continue because of the possibility of groundwater contamination based on various purpose of groundwater use.

A Model-Based Assessment of Radon Exposure from Groundwater (모델을 바탕으로 한 지하수로부터의 라돈에 의한 인체노출평가)

  • 유동한;한문희
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.153-154
    • /
    • 2003
  • 라돈은 바위나 토양 속에 존재하는 우라늄이 붕괴하면서 자연발생하므로 사실상 지구 어느 곳에서나 존재한다. 최근 국내에서는 대덕연구단지 지역주민이 애용하는 샘물에서 라돈과 우라늄등 방사성핵종의 농도가 미국환경보호청(USEPA)의 음용수 수질 기준치를 훨씬 상회하여 인체에 유해성이 우려된다는 보도가 있었다.[1] 본 연구는 지하수내에 존재하는 라돈이 인체건강에 영향을 주는 두 가지 인체노출경로를 파악하고 이들 경로에 대해 각각 수학적 모델들을 개발하여 인체노출량을 정량적으로 평가하여 보았다. 본 연구의 결과는 추후 라돈의 정량적인 인체위해도를 평가하는데 도움을 주리라고 판단된다. (중략)

  • PDF