Browse > Article
http://dx.doi.org/10.9719/EEG.2020.53.6.655

Microbial Community Structures Related to Arsenic Concentrations in Groundwater Occurring in Haman Area, South Korea  

Kim, Dong-Hun (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Moon, Sang-Ho (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Ko, Kyung-Seok (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
Kim, Sunghyun (Geogreen21, 901 E&C Venture Dream Tower)
Publication Information
Economic and Environmental Geology / v.53, no.6, 2020 , pp. 655-666 More about this Journal
Abstract
This study evaluated the characteristics of arsenic production in groundwater through microbial community analysis of groundwater contaminated with high arsenic in Haman area. Groundwater in Haman area is contaminated with arsenic in the range of 0-757.2 ㎍/L, which represents the highest arsenic contamination concentration reported in Korea as natural groundwater pollution source. Of the total 200 samples, 29 samples (14.5%) showed higher arsenic concentration than that of 10 ㎍/L, which is the standard for drinking water quality, and 8 samples (4%) found in wells with 80-100 m depth were above 50 ㎍/L. In addition, seven wells with arsenic concentration more than 100 ㎍/L located in the northern part of Haman. As a result of microbial community analysis for high arsenic-contaminated groundwater, the microbial community compositions were significantly different between each sample, and Proteobacteria was the most dominant phyla with an average of 61.5%. At the genus level, the Gallinonella genus was predominant with about 12.8% proportion, followed by the Acinetobacter and Methermicoccus genus with about 7.8 and 7.3%, respectively. It is expected that high arsenic groundwater in the study area was caused by a complex reaction of geochemical characteristics and biogeochemical processes. Therefore, it is expected that the constructed information on geochemical characteristics and microbial communities through this study could be used to identify the origin of high arsenic groundwater and the development of its controlling technology.
Keywords
Haman area; groundwater; arsenic; microbial community; biogeochemical;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Gorra, R., Webster, G., Martin, M., Celi, L., Mapelli, F. and Weightman, A.J. (2012), Dynamic microbial community associated with iron-arsenic co-precipitation products from a groundwater storage system in Bangladesh. Microbial. Ecol., v.64, p.171-186.   DOI
2 Hassan, Z., Sultana, M., van Breukelen, B.M., Khan, S.I. and Roling, W.F. (2015) Diverse arsenic- and ironcycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh. FEMS Microbiol. Ecol., v.91, fiv026.
3 Huang, Y., Li, H., Rensing, C., Zhao, K., Johnstone, L. and Wang, G. (2012) Genome sequence of the facultative anaerobic arsenite-oxidizing and nitrate-reducing bacterium Acidovorax sp. Strain NO1. J. Bacteriol., v.194, p.1635-1636.   DOI
4 Iino, T., Mori, K. and Suzuki, K.-i. (2010) Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int. J. Syst. Evol. Microbiol., v.60, p.2563-2566.   DOI
5 Jiang, Z., Li, P., Wang, Y., Liu, H., Wei, D., Yuan, C. and Wang, H. (2019) Arsenic mobilization in a high arsenic groundwater revealed by metagenomic and Geochip analyses. Sci. Rep., v.9, p.12972.   DOI
6 Kang, S.H., Kim, J.J., Kim, Y.H. and Kim, J.W. (2016) Water environment due to detection of arsenic in village water supply facilities in Haman area. Proceedings of the Annual Joint Conference, the Petrological Society of Korea and the Mineralogical Society of Korea, May 26-27, Busan, Korea. Abstract Book, p. 131-134.
7 Kim, M.J., Nriagu, J. and Haack, S. (2000) Carbonate ion and arsenic dissolution by groundwater. Environ. Sci. Technol., v.34, p.3094-3100.   DOI
8 Lee, J.-U., Lee, S.-W., Kim, K.-W. and Yoon, C.-H. (2005) The effect of different carbon sources on microbial mediation of arsenic in arsenic-contaminated sediment. Environ. Geochem. Health, v.27, p.15-9-168.
9 Weng, T.-N., Liu, C.-W., Kao, Y.-H. and Hsiao, S.S.-Y. (2017) Isotopic evidence of nitrogen sources and nitrogen transformation in arsenic-contaminated groundwater. Sci. Total Environ., v.578, p.167-185.   DOI
10 Wang, Y.H., Li, P., Dai, X.Y., Zhang, R., Jiang, Z., Jiang, D.W. and Wang, Y.X. (2015) Abundance and diversity of methanogens: Potential role in high arsenic groundwater in Hetao Plain of Inner Mongolia, China. Sci. Total Environ., v.515-516, p.153-161.   DOI
11 Li, W., Fu, L., Niu, B., Wu, S. and Wooley, J. (2012) Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform., v.13, p.656-668.   DOI
12 McArthur, J.M., Ravenscroft, P., Safiulla, S. and Thirlwall, M.F. (2001) Arsenic in groundwater: testing pollution mechanism for sedimentary aquifers in Bangladesh. Water Resour. Res., v.37, p.109-117.   DOI
13 Meliker, J.R. and Nriagu, J.O. (2007) Arsenic in drinking water and bladder cancer: Review of epidemiological evidence. In Bhattacharya, P., Mukherjee, A.B., Zeevenhoven, R., Bundschuh, J. and Loeppert, R. H. (eds.) Arsenic in soil and groundwater environment: Biogeochemical interactions, health effects and remediation. Elsevier, Amsterdam, p.653.
14 MOE (Ministry of Environment) and KIGAM (Korea Institute of Geoscience and Mineral Resources) (2018) Report for basic research of groundwater of Haman area. p.11-15.
15 Upadhyay, M.K., Yadav, P., Shukla, A. and Srivastava, S. (2018) Utilizing the potential of microorganisms for managing arsenic contamination: A feasible and sustainable approach. Front. Environ. Sci., v.6, 24.   DOI
16 Moon, J.-T., Kim, K., Kim, S.-H., Jeong, C.-S. and Hwang, G.-S. (2008) Geochemical investigation on arsenic contamination in the alluvial ground-water of Mankyeong River Watershea. Econ. Environ. Geol., v.41, p.673-683.
17 Nickson, R., McArthur, J.M., Burgess, W., Ahmed, K.M., Ravenscroft, P. and Rahman, M. (1998) Arsenic poisoning of Bangladesh groundwater. Nature, v.395, p.338.   DOI
18 Nickson, R., McArthur, J.M., Ravenscroft, P., Burgess, W. and Ahmed, K.M. (2000) Mechanism of arsenic release to groundwater, Bangladesh and West-Bengal. Appl. Geochem., v.15, p.403-413.   DOI
19 Park, S., Kim, S., Chung, H., Chang, S.W, Moon, H. and Nam, K. (2020) Effect of repetitive redox transitions to soil bacterial community and its potential impact on the cycles of iron and arsenic. J. Soil Groundw. Environ., v.25, p.26-36.
20 Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem., v.17, p.517-568.   DOI
21 Wang, L., Yin, Z. and Jing, C. (2020) Metagenomic insights into microbial arsenic metabolism in shallow groundwater of Datong basin, China. Chemosphere, v.245, 125603.   DOI
22 Wang, X., Rathinasabapathi, B., Oliveira, L.M.d., Guilherme, L.R.G. and Ma, L.Q. (2012) Bacteria-mediated arsenic oxidation and reduction in the growth media of arsenic hyperaccumulator Pteris vittata. Environ. Sci. Technol., v.46, p.11259-11266.   DOI
23 Wang, Y., Li, P., Li, B., Webster, G., Weightman, A.J., Jiang, Z., Jiang, D., Deng, Y. and Wang, Y. (2014) Bacterial diversity and community structure in high arsenic aquifers in Hetao Plain of Inner Mongolia, China. Geomicrobiol. J., v.31, p.338-349.   DOI
24 Ahn, J.S. and Cho, Y.C. (2013) Predicting natural arsenic contamination of bedrock groundwater for a local region in Korea and its application. Environ. Earth Sci., v.68, p.2123-2132.   DOI
25 Li, P., Wang, Y., Jiang, Z., Jiang, H., Li, B., Dong, H. and Wang, Y. (2013) Microbial diversity in high arsenic groundwater in Hetao Basin of Inner Mongolia, China. Geomicrobiol. J., v.30, p.897-909.   DOI
26 Li, P., Wang, Y., Dai, X., Zhang, R., Jiang, Z., Jiang, D., Wang, S., Jiang, H., Wang, Y. and Dong, H. (2015) Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China. PLoS One, v.10, e0125844.   DOI
27 Lee, J-Y., Moon, S.H. and Yun, S.-T. (2010) Contamination of groundwater by arsenic by arsenic and other constituents in an industrial complex. Environ. Earth Sci., v.60, p.65-79.   DOI
28 Wang, Y., Li, P., Jiang, Z., Sinkkonen, A., Wang, S., Tu, J., Wei, D., Dong, H. and Wang, Y. (2016) Microbial community of high arsenic groundwater in agricultural irrigation area of Hetao Plain, Inner Mongolia. Front. Microbiol., v.7, p.1917-1917.
29 Ahn, J.S., Park, Y.S., Kim, J.Y. and Kim, K.W. (2005) Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea, Environ. Geochem. Health., v.27, p.147-157.   DOI
30 Ahn, J.S., Ko, K.-S. and Chon, C.-M. (2007) Arsenic occurrence in groundwater of Korea, J. Soil Groundw. Environ., v.12, p.64-72.
31 Akai, J., Izumui, K., Fukuhara, H., Masuda, H., Nakano, S., Yoshimura, T., Ohfuji, H., Anawar, H.M. and Akai, K. (2004) Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh, Appl. Geochem., v.19, p.215-230.   DOI
32 Bagla, P. and Kaiser, J. (1996) India's spreading health crisis draws global arsenic experts. Science, v.274, p.174-175.   DOI
33 Barbier, B.A., Dziduch, I., Liebner, S., Ganzert, L., Lantuit, H., Pollard, W. and Wagner, D. (2012) Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes. FEMS Microbiol. Ecol., v.82, p.287-302.   DOI
34 Cho, B.W., Lee, B.D., Lee, I.H. and Choo, C.O. (2002) Speculation on the water quality for the natural mineral water. J. Eng. Geol., v.12, p.395-404.
35 Barringer, J.L., Mumford, A., Young, L.Y., Reilly, P.A., Bonin, J.L. and Rosman, R. (2010) Pathways for arsenic from sediments to groundwater to streams: Biogeochemical processes in the Inner Coastal Plain, New Jersey, USA. Water Res., v.44, p.5532-5544.   DOI
36 Acharyya, S.K., Chakraborty, P., Lahiri, S., Raymahashay, B.C., Guha, S. and Bhowmik, A. (1999) Arsenic poisoning in the Ganges delta, Nature, v.401, p.545.   DOI
37 Ahn, J.S., Ko K.-S., Lee, J.-S. and Kim, J.-Y. (2005) Characteristics of natural arsenic contaminatin in groundwater and its occurrences, Econ. Environ. Geol., v.38, p.547-561.
38 Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K. and Gordon, J.I. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat. methods, v.7, p.335-336.   DOI
39 Cavalca, L., Zecchin, S., Zaccheo, P., Abbas, B., Rotiroti, M., Bonomi, T. and Muyzer, G. (2019) Exploring biodiversity and arsenic metabolism of microbiota inhabiting arsenic-rich groundwaters in Northern Italy. Front. Microbiol., v.10, 1480.   DOI
40 Chon, C.-M., Kim, K.-Y., Koh, D.-C. and Choi, M.-J. (2009) Arsenic distribution and solubility in groundwater of Okcheon area, J. Miner. Soc. Korea, v.22, p.331-342.
41 Gnanaprakasam, E.T., Lloyd, J.R., Boothman, C., Ahmed, K.M., Choudhury, I., Bostick, B.C., van Geen, A. and Mailloux, B.J. (2017) Microbial community structure and arsenic biogeochemistry in two arsenic-impacted aquifers in Bangladesh. mBio, v.8, e01326-01317.
42 Das, D., Samanta, G., Mandal, B.K., Chowdhury, T.R., Chanda, C.R., Chowdhury, P.P., Basu, G.K. and Chakraborti, D. (1996) Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Health, v.18, p.5-15.   DOI
43 Edgar, R.C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, v.26, p.2460-2461.   DOI
44 Fukada, T., Hiscock, K.M., Dennis, P.F. and Grischek, T. (2003) A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site. Water Res., v.37, p.3070-3078.   DOI