• Title/Summary/Keyword: Ground truth

Search Result 301, Processing Time 0.029 seconds

A Semi-empirical Model for Microwave Polarimetric Radar Backscattering from Bare Soil Surfaces

  • Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.17-35
    • /
    • 1994
  • A semi-empirical model for microwave polarimetric radar backscattering from bare soil surfaces was developed using polarmetric radar measurements and the knowledge based on the theoretical and numerical solutions. The microwave polarimetric backscatter measurements were conducted for bare soil surfaces under a variety of roughness and moisture conditions at L-, C-, and X-band frequencies at incidence angles ranging from 10` to 70`. Since the accrate target parameters as well as the radar parameters are necessary for radar scattering modeling, a complete and accurate set of ground truth data were also collected using a laser profile meter and dielectric probes for each surface condition, from which accurate measurements were made of the rms height, correlation length, and dielectric constant. At first, the angular and spectral dependencies of the measured radar backscatter for a wide range of roughnesses and moisture conditions are examined. Then, the measured scattering behavior was tested using theoretical and numerical solutions. Based on the experimental observations and the theoretical and numerical solutions, a semi-empirical model was developed for backscattering coeffients in terms of the surface roughness parameters and the relative dielectric constant of the soil surface. The model was found to yield very good agreement with the backscattering measurements of this study as well as with independent measurements.

Automatic Road Extraction by Gradient Direction Profile Algorithm (GDPA) using High-Resolution Satellite Imagery: Experiment Study

  • Lee, Ki-Won;Yu, Young-Chul;Lee, Bong-Gyu
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.393-402
    • /
    • 2003
  • In times of the civil uses of commercialized high-resolution satellite imagery, applications of remote sensing have been widely extended to the new fields or the problem solving beyond traditional application domains. Transportation application of this sensor data, related to the automatic or semiautomatic road extraction, is regarded as one of the important issues in uses of remote sensing imagery. Related to these trends, this study focuses on automatic road extraction using Gradient Direction Profile Algorithm (GDPA) scheme, with IKONOS panchromatic imagery having 1 meter resolution. For this, the GDPA scheme and its main modules were reviewed with processing steps and implemented as a prototype software. Using the extracted bi-level image and ground truth coming from actual GIS layer, overall accuracy evaluation and ranking error-assessment were performed. As the processed results, road information can be automatically extracted; by the way, it is pointed out that some user-defined variables should be carefully determined in using high-resolution satellite imagery in the dense or low contrast areas. While, the GDPA method needs additional processing, because direct results using this method do not produce high overall accuracy or ranking value. The main advantage of the GDPA scheme on road features extraction can be noted as its performance and further applicability. This experiment study can be extended into practical application fields related to remote sensing.

Reinforced Feature of Dynamic Search Area for the Discriminative Model Prediction Tracker based on Multi-domain Dataset (다중 도메인 데이터 기반 구별적 모델 예측 트레커를 위한 동적 탐색 영역 특징 강화 기법)

  • Lee, Jun Ha;Won, Hong-In;Kim, Byeong Hak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.323-330
    • /
    • 2021
  • Visual object tracking is a challenging area of study in the field of computer vision due to many difficult problems, including a fast variation of target shape, occlusion, and arbitrary ground truth object designation. In this paper, we focus on the reinforced feature of the dynamic search area to get better performance than conventional discriminative model prediction trackers on the condition when the accuracy deteriorates since low feature discrimination. We propose a reinforced input feature method shown like the spotlight effect on the dynamic search area of the target tracking. This method can be used to improve performances for deep learning based discriminative model prediction tracker, also various types of trackers which are used to infer the center of the target based on the visual object tracking. The proposed method shows the improved tracking performance than the baseline trackers, achieving a relative gain of 38% quantitative improvement from 0.433 to 0.601 F-score at the visual object tracking evaluation.

Development of de-noised image reconstruction technique using Convolutional AutoEncoder for fast monitoring of fuel assemblies

  • Choi, Se Hwan;Choi, Hyun Joon;Min, Chul Hee;Chung, Young Hyun;Ahn, Jae Joon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.888-893
    • /
    • 2021
  • The International Atomic Energy Agency has developed a tomographic imaging system for accomplishing the total fuel rod-by-rod verification time of fuel assemblies within the order of 1-2 h, however, there are still limitations for some fuel types. The aim of this study is to develop a deep learning-based denoising process resulting in increasing the tomographic image acquisition speed of fuel assembly compared to the conventional techniques. Convolutional AutoEncoder (CAE) was employed for denoising the low-quality images reconstructed by filtered back-projection (FBP) algorithm. The image data set was constructed by the Monte Carlo method with the FBP and ground truth (GT) images for 511 patterns of missing fuel rods. The de-noising performance of the CAE model was evaluated by comparing the pixel-by-pixel subtracted images between the GT and FBP images and the GT and CAE images; the average differences of the pixel values for the sample image 1, 2, and 3 were 7.7%, 28.0% and 44.7% for the FBP images, and 0.5%, 1.4% and 1.9% for the predicted image, respectively. Even for the FBP images not discriminable the source patterns, the CAE model could successfully estimate the patterns similarly with the GT image.

No-reference Sharpness Index for Scanning Electron Microscopy Images Based on Dark Channel Prior

  • Li, Qiaoyue;Li, Leida;Lu, Zhaolin;Zhou, Yu;Zhu, Hancheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2529-2543
    • /
    • 2019
  • Scanning electron microscopy (SEM) image can link with the microscopic world through reflecting interaction between electrons and materials. The SEM images are easily subject to blurring distortions during the imaging process. Inspired by the fact that dark channel prior captures the changes to blurred SEM images caused by the blur process, we propose a method to evaluate the SEM images sharpness based on the dark channel prior. A SEM image database is first established with mean opinion score collected as ground truth. For the quality assessment of the SEM image, the dark channel map is generated. Since blurring is typically characterized by the spread of edge, edge of dark channel map is extracted. Then noise is removed by an edge-preserving filter. Finally, the maximum gradient and the average gradient of image are combined to generate the final sharpness score. The experimental results on the SEM blurred image database show that the proposed algorithm outperforms both the existing state-of-the-art image sharpness metrics and the general-purpose no-reference quality metrics.

Generation of contrast enhanced computed tomography image using deep learning network

  • Woo, Sang-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.41-47
    • /
    • 2019
  • In this paper, we propose a application of conditional generative adversarial network (cGAN) for generation of contrast enhanced computed tomography (CT) image. Two types of CT data which were the enhanced and non-enhanced were used and applied by the histogram equalization for adjusting image intensities. In order to validate the generation of contrast enhanced CT data, the structural similarity index measurement (SSIM) was performed. Prepared generated contrast CT data were analyzed the statistical analysis using paired sample t-test. In order to apply the optimized algorithm for the lymph node cancer, they were calculated by short to long axis ratio (S/L) method. In the case of the model trained with CT data and their histogram equalized SSIM were $0.905{\pm}0.048$ and $0.908{\pm}0.047$. The tumor S/L of generated contrast enhanced CT data were validated similar to the ground truth when they were compared to scanned contrast enhanced CT data. It is expected that advantages of Generated contrast enhanced CT data based on deep learning are a cost-effective and less radiation exposure as well as further anatomical information with non-enhanced CT data.

Automatic Payload Signature Update System for the Classification of Dynamically Changing Internet Applications

  • Shim, Kyu-Seok;Goo, Young-Hoon;Lee, Dongcheul;Kim, Myung-Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1284-1297
    • /
    • 2019
  • The network environment is presently becoming very increased. Accordingly, the study of traffic classification for network management is becoming difficult. Automatic signature extraction system is a hot topic in the field of traffic classification research. However, existing automatic payload signature generation systems suffer problems such as semi-automatic system, generating of disposable signatures, generating of false-positive signatures and signatures are not kept up to date. Therefore, we provide a fully automatic signature update system that automatically performs all the processes, such as traffic collection, signature generation, signature management and signature verification. The step of traffic collection automatically collects ground-truth traffic through the traffic measurement agent (TMA) and traffic management server (TMS). The step of signature management removes unnecessary signatures. The step of signature generation generates new signatures. Finally, the step of signature verification removes the false-positive signatures. The proposed system can solve the problems of existing systems. The result of this system to a campus network showed that, in the case of four applications, high recall values and low false-positive rates can be maintained.

Predicting numeric ratings for Google apps using text features and ensemble learning

  • Umer, Muhammad;Ashraf, Imran;Mehmood, Arif;Ullah, Saleem;Choi, Gyu Sang
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.95-108
    • /
    • 2021
  • Application (app) ratings are feedback provided voluntarily by users and serve as important evaluation criteria for apps. However, these ratings can often be biased owing to insufficient or missing votes. Additionally, significant differences have been observed between numeric ratings and user reviews. This study aims to predict the numeric ratings of Google apps using machine learning classifiers. It exploits numeric app ratings provided by users as training data and returns authentic mobile app ratings by analyzing user reviews. An ensemble learning model is proposed for this purpose that considers term frequency/inverse document frequency (TF/IDF) features. Three TF/IDF features, including unigrams, bigrams, and trigrams, were used. The dataset was scraped from the Google Play store, extracting data from 14 different app categories. Biased and unbiased user ratings were discriminated using TextBlob analysis to formulate the ground truth, from which the classifier prediction accuracy was then evaluated. The results demonstrate the high potential for machine learning-based classifiers to predict authentic numeric ratings based on actual user reviews.

Development of a portable system for monitoring indoor particulate matter concentration (휴대용 실내 미세먼지 농도 측정 장치 개발)

  • Kim, Yoo Jin;Choi, Hyun Seul;Go, Taesik
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • Airborne particulate matter(PM) has been a global environmental problem. PM whose diameter is smaller than 10 ㎛ can permeate respiratory organs and has harmful effects on human health. Therefore, PM monitoring systems are necessary for management of PM and prevention of PM-induced negative effects. Conventional PM monitoring techniques are expensive and cumbersome to handle. In the present study, two types of PM monitoring devices were designed for measuring indoor PM concentration, portably. We experimentally investigated the performance of three commercial PM concentration measurement sensors in a closed test chamber. As a result, PM2008 sensor showed the best PM concentration measurement accuracy. Linear regression method was applied to convert PM concentration value acquired from PM2008 sensor into ground truth value. A mobile application(app.) was also created for users to check the PM concentration, easily. The mobile app. also provides safety alarm when the PM10 concentration exceeds 81 ㎛/m3. The developed hand-held system enables the facile monitoring of surrounding air quality.

EpiLoc: Deep Camera Localization Under Epipolar Constraint

  • Xu, Luoyuan;Guan, Tao;Luo, Yawei;Wang, Yuesong;Chen, Zhuo;Liu, WenKai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2044-2059
    • /
    • 2022
  • Recent works have shown that the geometric constraint can be harnessed to boost the performance of CNN-based camera localization. However, the existing strategies are limited to imposing image-level constraint between pose pairs, which is weak and coarse-gained. In this paper, we introduce a pixel-level epipolar geometry constraint to vanilla localization framework without the ground-truth 3D information. Dubbed EpiLoc, our method establishes the geometric relationship between pixels in different images by utilizing the epipolar geometry thus forcing the network to regress more accurate poses. We also propose a variant called EpiSingle to cope with non-sequential training images, which can construct the epipolar geometry constraint based on a single image in a self-supervised manner. Extensive experiments on the public indoor 7Scenes and outdoor RobotCar datasets show that the proposed pixel-level constraint is valuable, and helps our EpiLoc achieve state-of-the-art results in the end-to-end camera localization task.