• Title/Summary/Keyword: Ground motion simulation

Search Result 197, Processing Time 0.028 seconds

Generation of Artificial Earthquake Ground Motions for the Area with Low Seismicity (국내 지진 기록을 이용한 약진 지역에서의 인공지진파 발생에 관한 연구)

  • 김승훈;이승창;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.497-504
    • /
    • 1998
  • In the nonlinear dynamic structural analysis, the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea, it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well own that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary stochastic process model which can be modeled as components with an intensity function, a frequency modulation function and a power spectral density function to describe such non-stationary characteristics. This model is based on the simulation for the strong-motion earthquakes with magnitude greater than approximately 5.0~6.0, because it will be not only expected to cause structural damage but also involved the characteristics of earthquake motions. Also, the recorded earthquake motion within this range are still very scarce in Korea. Thus, it is necessary to verify the model by the application of it to the mid-magnitude (approximately 4.0~6.0) earthquakes actually recorded in domestic or foreign area. The purpose of the paper is to generate an artificial earthquake using the model of Yeh and Wen in the area with low seismicity.

  • PDF

A Study of Aircraft Ground Motion (항공기 지상운동 특성에 관한 연구)

  • Song, Won Jong
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.17-25
    • /
    • 2017
  • Vertical reaction force between ground and tire is an important parameter determining the ground behavior characteristics of aircraft. This parameter can be used to calculate the lateral force and friction. However, it is hard to obtain this parameter in real-time when the aircraft is taxiing. Therefore, pre-analysis of ground behavior and vertical reaction force should be conducted using ground simulation results to prevent rollover or hazardous scenarios. In this paper, a Landing Gear and Full-Aircraft model was constructed using VI-Aircraft S/W. The roll behavior of aircraft was analyzed using steering simulation results compared with taxi-test data.

The topographic effect of ground motion based on Spectral Element Method

  • Liu, Xinrong;Jin, Meihai;Li, Dongliang;Hu, Yuanxin;Song, Jianxue
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.411-429
    • /
    • 2017
  • A Spectral Element Method for 3D seismic wave propagation simulation is derived based on the three-dimensional fluctuating elastic dynamic equation. Considering the 3D real terrain and the attenuation characteristics of the medium, the topographic effect of Wenchuan earthquake is simulated by using the Spectral Element Method (SEM) algorithm and the ASTER DEM model. Results show that the high PGA (peak ground acceleration) region was distributed along the peak and the slope side away from the epicenter in the epicenter area. The overall distribution direction of high PGA and high PGV (peak ground velocity) region is parallel to the direction of the seismogenic fault. In the epicenter of the earthquake, the ground motion is to some extent amplified under the influence of the terrain. The amplification effect of the terrain on PGA is complicated. It does not exactly lead to amplification of PGA at the ridge and the summit or attenuation of PGA in the valley.

LQG/LTR controller design for ground alignment of intertial platform

  • Kim, Jong-Kwon;Shin, Yong-Jin;Cho, Kyeum-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.372-375
    • /
    • 1995
  • The LQG/LTR controller design procedure for ground alignment of inertial platform is accomplished. Due to the alignment system dynamics, LQG/LTR controller is proposed to overcome both singular problem and nonsquare problem. To show the effectiveness of this control system, computer simulation was performed under the assumption of random sway motion.

  • PDF

Movement Analysis of Waist and Tail of Lizard for Controlling Yawing for Motion in Slow Trotting (저속 주행 시 도마뱀 몸체의 편요 움직임을 제어하는 허리 및 꼬리의 움직임 원리)

  • Kim, Jeongryul;Kim, Jong-Won;Park, Jaeheung;Kim, Jongwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.620-625
    • /
    • 2013
  • Mammals such as dogs and cheetahs change their gait from trot to gallop as they run faster. However, lizards always trot for various speeds of running. When mammals run slowly with trot gait, their fore leg and hind leg generate the required force for acceleration or deceleration such that the yaw moments created by these forces cancel each other. On the other hand, when lizards run slowly, their fore legs and hind legs generate the forces for deceleration and acceleration, respectively. In this paper, the yaw motion of a lizard model is controlled by the movement of their waist and tail, and the reaction moment from the ground produced by the hind legs in simulation. The simulation uses the whole body dynamics of a lizard model, which consists of 4 links based on the Callisaurus draconoides. The results show that the simulated trotting of the model is similar to that of a real lizard when the movement of the model is optimized to minimize the reaction moment from the ground. It means that the body of a lizard moves in such a way that the reaction moment from the ground is minimized. This demonstrates our hypothesis on how lizards trot using body motion.

Failure probability of tall buildings with TMD in the presence of structural, seismic, and soil uncertainties

  • Sadegh, Etedali;Mohammad, Seifi;Morteza, Akbari
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.381-391
    • /
    • 2023
  • The seismic performance of the tall building equipped with a tuned mass damper (TMD) considering soil-structure interaction (SSI) effects is well studied in the literature. However, these studies are performed on the nominal model of the seismic-excited structural system with SSI. Hence, the outcomes of the studies may not valid for the actual structural system. To address the study gap, the reliability theory as a useful and powerful method is utilized in the paper. The present study aims to carry out reliability analyses on tall buildings equipped with TMD under near-field pulse-like (NFPL) ground motions considering SSI effects using a subset simulation (SS) method. In the presence of uncertainties of the structural model, TMD device, foundation, soil, and near-field pulse-like ground motions, the numerical studies are performed on a benchmark 40-story building and the failure probabilities of the structures with and without TMD are evaluated. Three types of soils (dense, medium, and soft soils), different earthquake magnitudes (Mw = 7,0. 7,25. 7,5 ), different nearest fault distances (r = 5. 10 and 15 km), and three seismic performance levels of immediate occupancy (IO), life safety (LS), and collapse prevention (CP) are considered in this study. The results show that tall buildings built near faults and on soft soils are more affected by uncertainties of the structural and ground motion models. Hence, ignoring these uncertainties may result in an inaccurate estimation of the maximum seismic responses. Also, it is found the TMD is not able to reduce the failure probabilities of the structure in the IO seismic performance level, especially for high earthquake magnitudes and structures built near the fault. However, TMD is significantly effective in the reduction of failure probability for the LS and CP performance levels. For weak earthquakes and long fault distances, the failure probabilities of both structures with and without TMD are near zero, and the efficiency of the TMD in the reduction of failure probabilities is reduced by increasing earthquake magnitudes and the reduction of fault distance. As soil softness increases, the failure probability of structures both with and without TMD often increases, especially for severe near-fault earthquake motion.

Three-Dimensional Simulation of Seismic Wave Propagation in Elastic Media Using Finite-Difference Method (유한차분법을 이용한 3차원 지진파 전파 모의)

  • 강태섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.81-88
    • /
    • 2000
  • The elastic wave equation is solved using the finite-difference method in 3D space to simulate the seismic wave propagation. It is based on the velocity-stress formulation of the equation of motion on a staggered grid. The nonreflecting boundary conditions are used to attenuate the wave field close to the numerical boundary. To satisfy the stress-free conditions at the free-surface boundary, a new formulation combining the zero-stress formalism with the vacuum one is applied. The effective media parameters are employed to satisfy the traction continuity condition across the media interface. With use of the moment-tensor components, the wide range of source mechanism parameters can be specified. The numerical experiments are carried out in order to test the applicability and accuracy of this scheme and to understand the fundamental features of the wave propagation under the generalized elastic media structure. Computational results show that the scheme is sufficiently accurate for modeling wave propagation in 3D elastic media and generates all the possible phases appropriately in under the given heterogeneous velocity structure. Also the characteristics of the ground motion in an sedimentary basin such as the amplification, trapping, and focusing of the elastic wave energy are well represented. These results demonstrate the use of this simulation method will be helpful for modeling the ground motion of seismological and engineering purpose like earthquake hazard assessment, seismic design, city planning, and etc..

  • PDF

Incorporating ground motion effects into Sasaki and Tamura prediction equations of liquefaction-induced uplift of underground structures

  • Chou, Jui-Ching;Lin, Der-Guey
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • In metropolitan areas, the quantity and density of the underground structure increase rapidly in recent years. Even though most damage incidents of the underground structure were minor, there were still few incidents causing a great loss in lives and economy. Therefore, the safety evaluation of the underground structure becomes an important issue in the disaster prevention plan. Liquefaction induced uplift is one important factor damaging the underground structure. In order to perform a preliminary evaluation on the safety of the underground structure, simplified prediction equations were introduced to provide a first order estimation of the liquefaction induced uplift. From previous studies, the input motion is a major factor affecting the magnitude of the uplift. However, effects of the input motion were not studied and included in these equations in an appropriate and rational manner. In this article, a numerical simulation approach (FLAC program with UBCSAND model) is adopted to study effects of the input motion on the uplift. Numerical results show that the uplift and the Arias Intensity (Ia) are closely related. A simple modification procedure to include the input motion effects in the Sasaki and Tamura prediction equation is proposed in this article for engineering practices.

The effect of structural variability and local site conditions on building fragility functions

  • Sisi, Aida Azari;Erberik, Murat A.;Askan, Aysegul
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.285-295
    • /
    • 2018
  • In this study, the effect of local site conditions (site class and site amplifications) and structural variability are investigated on fragility functions of typical building structures. The study area is chosen as Eastern Turkey. The fragility functions are developed using site-specific uniform hazard spectrum (UHS). The site-specific UHS is obtained based on simulated ground motions. The implementation of ground motion simulation into seismic hazard assessment has the advantage of investigating detailed local site effects. The typical residential buildings in Erzincan are represented by equivalent single degree of freedom systems (ESDOFs). Predictive equations are accomplished for structural seismic demands of ESDOFs to derive fragility functions in a straightforward manner. To study the sensitivity of fragility curves to site class, two sites on soft and stiff soil are taken into account. Two alternative site amplification functions known as generic and theoretical site amplifications are examined for these two sites. The reinforced concrete frames located on soft soil display larger fragilities than those on stiff soil. Theoretical site amplification mostly leads to larger fragilities than generic site amplification more evidently for reinforced concrete buildings. Additionally, structural variability of ESDOFs is generally observed to increase the fragility especially for rigid structural models.