Three-Dimensional Simulation of Seismic Wave Propagation in Elastic Media Using Finite-Difference Method

유한차분법을 이용한 3차원 지진파 전파 모의

  • 강태섭 (서울대학교 대학원 지구환경과학부 박사과정, 학생회원)
  • Published : 2000.10.01

Abstract

The elastic wave equation is solved using the finite-difference method in 3D space to simulate the seismic wave propagation. It is based on the velocity-stress formulation of the equation of motion on a staggered grid. The nonreflecting boundary conditions are used to attenuate the wave field close to the numerical boundary. To satisfy the stress-free conditions at the free-surface boundary, a new formulation combining the zero-stress formalism with the vacuum one is applied. The effective media parameters are employed to satisfy the traction continuity condition across the media interface. With use of the moment-tensor components, the wide range of source mechanism parameters can be specified. The numerical experiments are carried out in order to test the applicability and accuracy of this scheme and to understand the fundamental features of the wave propagation under the generalized elastic media structure. Computational results show that the scheme is sufficiently accurate for modeling wave propagation in 3D elastic media and generates all the possible phases appropriately in under the given heterogeneous velocity structure. Also the characteristics of the ground motion in an sedimentary basin such as the amplification, trapping, and focusing of the elastic wave energy are well represented. These results demonstrate the use of this simulation method will be helpful for modeling the ground motion of seismological and engineering purpose like earthquake hazard assessment, seismic design, city planning, and etc..

Keywords