• Title/Summary/Keyword: Ground motion parameter

Search Result 74, Processing Time 0.023 seconds

Damage potential of earthquake records for RC building stock

  • Ozmen, Hayri Baytan;Inel, Mehmet
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1315-1330
    • /
    • 2016
  • This study investigates ground motion parameters and their damage potential for building type structures. It focuses on low and mid-rise reinforced concrete buildings that are important portion of the existing building stock under seismic risk in many countries. Correlations of 19 parameters of 466 earthquake records with nonlinear displacement demands of 1056 Single Degree of Freedom (SDOF) systems are investigated. Properties of SDOF systems are established to represent RC building construction practice. The correlation of damage and ground motion characteristics is examined with respect to number of story and site classes. Equations for average nonlinear displacement demands of considered RC buildings are given for some of the ground motion parameters. Velocity related parameters are generally found to have better results than the acceleration, displacement and frequency related ones. Correlation of the parameters may be expected to decrease with increasing intensity of seismic event. Velocity Spectrum Intensity and Peak Ground Velocity have been found to have the highest correlation values for almost all site classes and number of story groups. Common parameter of Peak Ground Acceleration has lower correlation with damage when compared to them and some other parameters like Effective Design Acceleration and Characteristic Intensity.

항공기 지상운동 특성에 관한 연구 (A Study of Aircraft Ground Motion)

  • 송원종
    • 항공우주시스템공학회지
    • /
    • 제11권6호
    • /
    • pp.17-25
    • /
    • 2017
  • 항공기가 지상에서 주행할 때 지면과 타이어 사이에 걸리는 수직하중 정보는 마찰력, 횡력 계산 시 사용되는 등 항공기 거동에 있어서 주요한 변수이다. 그러나 실제 항공기 주행 시 실시간으로 수직하중 정보를 얻기 힘들고, 실제 시험에서 발생 가능한 비정상적 활주 상황을 방지하기 위하여 사전 해석을 통해 타이어 수직하중 및 항공기 지상 거동 특성을 예측해 볼 필요가 있다. 본 논문에서는 VI-Aircraft S/W를 이용하여 착륙장치 및 Full-Aircraft 모델을 구성하였고 조향 해석 및 활주시험 상황 모사 해석을 통하여 항공기 지상 거동 특성에 대하여 분석하였다.

지진 시 필댐의 침하량과 지반진동 변수 간의 상관관계 분석 (Evaluation of Correlation between Earthquake Induced Settlement of Fill Dams and Ground Motion Parameters)

  • 백종민;박두희;윤지남;최병한
    • 한국지반신소재학회논문집
    • /
    • 제17권4호
    • /
    • pp.65-72
    • /
    • 2018
  • 지진 시 댐에 여유고 이상의 과도한 침하가 발생하는 경우 댐의 붕괴로 이어질 수 있다. 댐의 침하는 댐의 손상 예측에 중요한 지표로 사용되는 횡균열 폭과 깊이에 높은 상관성을 가진 것으로 알려져 있으므로 댐의 손상 평가에서 정확한 침하량 예측이 중요하다. 국내에서는 국외에서 수치해석을 통하여 도출된 경험적인 식이 댐의 손상 평가에 널리 사용되고 있다. 본 연구에서는 필댐으로 분류되는 콘크리트 표면차수벽 석괴댐(CFRD)과 코어형 석괴댐(ECRD) 대표 단면에 대한 2차원 비선형 동적 해석을 수행하여 댐마루의 침하량을 계산하였다. 입력지진파의 지진강도와 지진규모 등의 영향을 복합적으로 고려하기 위하여 20개의 계측기록을 해석에 사용하였다. 수치해석으로 계산된 결과를 바탕으로 댐마루 침하량을 예측하기 위해 지진파의 최대지반가속도, 최대지반속도, Arias Intensity, 지진규모와의 상관관계를 도출하였다. 평가 결과, 최대지반가속도에 추가적인 변수를 사용할 경우, 상관성이 크게 향상되는 것으로 나타났다.

단일 지진관측소의 지반가속도 구간 누적값 및 최대값 파라미터를 이용한 실시간 지진규모 추정 연구 (Real-time Estimation of the Earthquake Magnitude Using the Bracketed Cumulative and Peak Parameters of the Ground-motion Acceleration of a Single Station)

  • 연관희
    • 한국지진공학회논문집
    • /
    • 제18권1호
    • /
    • pp.29-36
    • /
    • 2014
  • In industrial facilities sites, the conventional method determining the earthquake magnitude (M) using earthquake ground-motion records is generally not applicable due to the poor quality of data. Therefore, a new methodology is proposed for determining the earthquake magnitude in real-time based on the amplitude measures of the ground-motion acceleration mostly from S-wave packets with the higher signal-to-ratios, given the Vs30 of the site. The amplitude measures include the bracketed cumulative parameters and peak ground acceleration (As). The cumulative parameter is either CAV (Cumulative Absolute Velocity) with 100 SPS (sampling per second) or BSPGA (Bracketed Summation of the PGAs) with 1 SPS. The arithmetic equations to determine the earthquake magnitude are derived from the CAV(BSPGA)-As-M relations. For the application to broad ranges of earthquake magnitude and distance, the multiple relations of CAV(BSPGA)-As-M are derived based on worldwide earthquake records and successfully used to determine the earthquake magnitude with a standard deviation of ${\pm}0.6M$.

A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems

  • Samimifar, Maryam;Massumi, Ali;Moghadam, Abdolreza S.
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.289-301
    • /
    • 2019
  • Hysteretic energy is defined as energy dissipated through inelastic deformations during a ground motion by the system. It includes frequency content and duration of ground motion as two remarkable parameters, while these characteristics are not seen in displacement spectrum. Since maximum displacement individually cannot be the appropriate criterion for damage assessment, hysteretic energy has been evaluated in this research as a more comprehensive seismic demand parameter. An innovative methodology has been proposed to establish a new equivalent linear model to estimate hysteretic energy spectrum for bilinear SDOF models under two different sets of earthquake excitations. Error minimization has been defined in the space of equivalent linearization concept, which resulted in equivalent damping and equivalent period as representative parameters of the linear model. Nonlinear regression analysis was carried out for predicting these equivalent parameter as a function of ductility. The results also indicate differences between seismic demand characteristics of far-field and near-field ground motions, which are not identified by most of previous equations presented for predicting seismic energy. The main advantage of the proposed model is its independency on parameters related to earthquake and response characteristics, which has led to more efficiency as well as simplicity. The capability of providing a practical energy based seismic performance evaluation is another outstanding feature of the proposed model.

Stochastic response of suspension bridges for various spatial variability models

  • Adanur, Suleyman;Altunisik, Ahmet C.;Soyluk, Kurtulus;Dumanoglu, A. Aydin
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.1001-1018
    • /
    • 2016
  • The purpose of this paper is to compare the structural responses obtained from the stochastic analysis of a suspension bridge subjected to uniform and partially correlated seismic ground motions, using different spatial correlation functions commonly used in the earthquake engineering. The spatial correlation function employed in this study consists of a term that characterizes the loss of coherency. To account for the spatial variability of ground motions, the widely used four loss of coherency models in the literature has been taken into account in this study. Because each of these models has its own characteristics, it is intended to determine the sensitivity of a suspension bridge due to these losses of coherency models which represent the spatial variability of ground motions. Bosporus Suspension Bridge connects Europe to Asia in Istanbul is selected as a numerical example. The bridge has steel towers that are flexible, inclined hangers and a steel box-deck of 1074 m main span, with side spans of 231 and 255 m on the European and Asian sides, respectively. For the ground motion the filtered white noise model is considered and applied in the vertical direction, the intensity parameter of this model is obtained by using the S16E component of Pacoima Dam record of 1971 San Fernando earthquake. An analytically simple model called as filtered white noise ground motion model is chosen to represent the earthquake ground motion. When compared with the uniform ground motion case, the results obtained from the spatial variability models with partial correlation outline the necessity to include the spatial variability of ground motions in the stochastic dynamic analysis of suspension bridges. It is observed that while the largest response values are obtained for the model proposed by Harichandran and Vanmarcke, the model proposed by Uscinski produces the smallest responses among the considered partially correlated ground motion models. The response values obtained from the uniform ground motion case are usually smaller than those of the responses obtained from the partially correlated ground motion cases. While the response values at the flexible parts of the bridge are totally dominated by the dynamic component, the pseudo-static component also has significant contributions for the response values at the rigid parts of the bridge. The results also show the consistency of the spatial variability models, which have different characteristics, considered in this study.

추계학적 그린함수법으로 합성된 지반운동에 대한 단층 파라미터의 영향 (Effects of Fault Parameters on the Ground Motion Synthesized by the Stochastic Green Function Method)

  • 김정한;서정문;최인길
    • 한국지진공학회논문집
    • /
    • 제16권1호
    • /
    • pp.27-35
    • /
    • 2012
  • 이 연구에서는 추계학적 그린함수법에 의한 단층 모델을 이용하여 지진파를 합성하고 단층 파라미터의 변화에 의한 지반 운동의 차이를 평가하였다. 모멘트 규모 6.5의 단층을 예제로 선정하였고 아스페리티 면적의 통계값을 이용하여 슬립의 분포를 모델링하였다. 평가를 위해 고려된 단층 파라미터들은 진원의 위치, 전단파 속도 대비 파열 전파속도 비, 상승시간, 절점주파수 그리고 고주파감쇠 필터 등 이었다. 요소지진원에 적용된 파라미터들은 구조권역별 특성이 다른 지역의 값을 사용하였고 다른 파라미터들은 발생 가능한 임의의 값을 사용하였다. 생성된 지반운동 시간이력으로부터 응답스펙트럼을 작성하였으며, 파라미터의 값을 달리하여 비교하였다. 이로부터 각각의 단층파라미터에 의해 영향을 받는 주파수 구간 및 스펙트럼 가속도의 차이를 평가하였다.

Development of seismic collapse capacity spectra for structures with deteriorating properties

  • Shu, Zhan;Li, Shuang;Gao, Mengmeng;Yuan, Zhenwei
    • Earthquakes and Structures
    • /
    • 제12권3호
    • /
    • pp.297-307
    • /
    • 2017
  • Evaluation on the sidesway seismic collapse capacity of the widely used low- and medium-height structures is meaningful. These structures with such type of collapse are recognized that behave as inelastic deteriorating single-degree-of-freedom (SDOF) systems. To incorporate the deteriorating effects, the hysteretic loop of the nonlinear SDOF structural model is represented by a tri-linear force-displacement relationship. The concept of collapse capacity spectra are adopted, where the incremental dynamic analysis is performed to check the collapse point and a normalized ground motion intensity measure corresponding to the collapse point is used to define the collapse capacity. With a large amount of earthquake ground motions, a systematic parameter study, i.e., the influences of various ground motion parameters (site condition, magnitude, distance to rupture, and near-fault effect) as well as various structural parameters (damping, ductility, degrading stiffness, pinching behavior, accumulated damage, unloading stiffness, and P-delta effect) on the structural collapse capacity has been performed. The analytical formulas for the collapse capacity spectra considering above influences have been presented so as to quickly predict the structural collapse capacities.

Ductility inverse-mapping method for SDOF systems including passive dampers for varying input level of ground motion

  • Kim, Hyeong-Gook;Yoshitomi, Shinta;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제3권1호
    • /
    • pp.59-81
    • /
    • 2012
  • A ductility inverse-mapping method for SDOF systems including passive dampers is proposed which enables one to find the maximum acceleration of ground motion for the prescribed maximum response deformation. In the conventional capacity spectrum method, the maximum response deformation is computed through iterative procedures for the prescribed maximum acceleration of ground motion. This is because the equivalent linear model for response evaluation is described in terms of unknown maximum deformation. While successive calculations are needed, no numerically unstable iterative procedure is required in the proposed method. This ductility inverse-mapping method is applied to an SDOF model of bilinear hysteresis. The SDOF models without and with passive dampers (viscous, viscoelastic and hysteretic dampers) are taken into account to investigate the effectiveness of passive dampers for seismic retrofitting of building structures. Since the maximum response deformation is the principal parameter and specified sequentially, the proposed ductility inverse-mapping method is suitable for the implementation of the performance-based design.

Dependency of COD on ground motion intensity and stiffness distribution

  • Aschheim, Mark;Maurer, Edwin;Browning, JoAnn
    • Structural Engineering and Mechanics
    • /
    • 제27권4호
    • /
    • pp.425-438
    • /
    • 2007
  • Large changes in stiffness associated with cracking and yielding of reinforced concrete sections may be expected to occur during the dynamic response of reinforced concrete frames to earthquake ground shaking. These changes in stiffness in stories that experience cracking might be expected to cause relatively large peak interstory drift ratios. If so, accounting for such changes would add complexity to seismic design procedures. This study evaluates changes in an index parameter to establish whether this effect is significant. The index, known as the coefficient of distortion (COD), is defined as the ratio of peak interstory drift ratio and peak roof drift ratio. The sensitivity of the COD is evaluated statistically for five- and nine-story reinforced concrete frames having either uniform story heights or a tall first story. A suite of ten ground motion records was used; this suite was scaled to five intensity levels to cause varied degrees of damage to the concrete frame elements. Ground motion intensity was found to cause relatively small changes in mean CODs; the changes were most pronounced for changes in suite scale factor from 0.5 to 1 and from 1 to 4. While these changes were statistically significant in several cases, the magnitude of the change was sufficiently small that values of COD may be suggested for use in preliminary design that are independent of shaking intensity. Consequently, design limits on interstory drift ratio may be implemented by limiting the peak roof drift in preliminary design.