DOI QR코드

DOI QR Code

Evaluation of Correlation between Earthquake Induced Settlement of Fill Dams and Ground Motion Parameters

지진 시 필댐의 침하량과 지반진동 변수 간의 상관관계 분석

  • Baeg, Jongmin (Dept. of Civil and Env. Engineering., Hanyang University) ;
  • Park, Duhee (Dept. of Civil and Env. Engineering., Hanyang University) ;
  • Yoon, Jinam (Dept. of Civil and Env. Engineering., Hanyang University) ;
  • Choi, Byoung-Han (Rural Research Institute, Korea Rural Community Co.)
  • Received : 2018.11.05
  • Accepted : 2018.11.14
  • Published : 2018.12.30

Abstract

Seismically induced settlement exceeding dam freeboard may lead to a dam failure. The prediction of settlement is important also because it is also reported to be strongly related to longitudinal crack width and depth, which are critical indices used for safe evaluation of dams. The empirical correlation derived from numerical simulations is most often used. In this study, two-dimensional dynamic nonlinear analyses are performed using representative CFRD and ECRD fill dams. A total of 20 recorded motions are used to account for the influence on ground motion intensity and magnitude. The calculated crest settlements are correlated to four ground motion parameters, which are peak ground acceleration (PGA), peak ground velocity (PGV), Aria Intensity ($I_A$), and magnitude. It is demonstrated that using ground motion parameters in addition to PGA can significantly increase the prediction accuracy.

지진 시 댐에 여유고 이상의 과도한 침하가 발생하는 경우 댐의 붕괴로 이어질 수 있다. 댐의 침하는 댐의 손상 예측에 중요한 지표로 사용되는 횡균열 폭과 깊이에 높은 상관성을 가진 것으로 알려져 있으므로 댐의 손상 평가에서 정확한 침하량 예측이 중요하다. 국내에서는 국외에서 수치해석을 통하여 도출된 경험적인 식이 댐의 손상 평가에 널리 사용되고 있다. 본 연구에서는 필댐으로 분류되는 콘크리트 표면차수벽 석괴댐(CFRD)과 코어형 석괴댐(ECRD) 대표 단면에 대한 2차원 비선형 동적 해석을 수행하여 댐마루의 침하량을 계산하였다. 입력지진파의 지진강도와 지진규모 등의 영향을 복합적으로 고려하기 위하여 20개의 계측기록을 해석에 사용하였다. 수치해석으로 계산된 결과를 바탕으로 댐마루 침하량을 예측하기 위해 지진파의 최대지반가속도, 최대지반속도, Arias Intensity, 지진규모와의 상관관계를 도출하였다. 평가 결과, 최대지반가속도에 추가적인 변수를 사용할 경우, 상관성이 크게 향상되는 것으로 나타났다.

Keywords

HKTHB3_2018_v17n4_65_f0001.png 이미지

Fig. 1. Settlement of embankment dams during earthquake (Swaisgood, 2003)

HKTHB3_2018_v17n4_65_f0002.png 이미지

Fig. 2. CFRD standard section and numerical model

HKTHB3_2018_v17n4_65_f0003.png 이미지

Fig. 3. ECRD standard section and numerical model

HKTHB3_2018_v17n4_65_f0004.png 이미지

Fig. 4. Comparison of Darendeli (2001) and Sig3 model nonlinear curves

HKTHB3_2018_v17n4_65_f0005.png 이미지

Fig. 5. Shear wave velocity of rockfill and core

HKTHB3_2018_v17n4_65_f0006.png 이미지

Fig. 6. 5% damped response spectrum of input motions and design response spectrum of MOLIT (2016) normalized to the PGA

HKTHB3_2018_v17n4_65_f0007.png 이미지

Fig. 7. Comparison of calculated crest settlements with the results of Swaisgood (2003)

HKTHB3_2018_v17n4_65_f0008.png 이미지

Fig. 8. Correlations between crest settlement (%) and four ground motion parameters

HKTHB3_2018_v17n4_65_f0009.png 이미지

Fig. 9. Comparison of calculated and numerical results of dam crest settlement in %: case 1~case 8

Table 1. Domestic dam specifications

HKTHB3_2018_v17n4_65_t0001.png 이미지

Table 2. Material properties

HKTHB3_2018_v17n4_65_t0002.png 이미지

Table 3. Input motions used in the analysis from PEER database (Timothy et al., 2014)

HKTHB3_2018_v17n4_65_t0003.png 이미지

Table 4. Matrix of correlations between settlement and ground motion parameters

HKTHB3_2018_v17n4_65_t0004.png 이미지

References

  1. Arias, A. (1970), "Measure of earthquake intensity", Seismic Design for Nuclear Power Plants, edited by Hansen, R. J., Massachusetts Inst. of Tech., Cambridge, pp.438-483.
  2. Darendeli, M. B. (2001), Development of a new family of normalized modulus reduction and material damping curves, Ph. D. dissertation, University of Texas at Austin.
  3. Itasca Consulting Group (2011), Fast Lagrange Analysis of Continua, Version 7.0.
  4. KIWE (2004), Study on evaluation method of seismic safety on various types of dams, KIWE-DRC-04-14, K water (in Korean).
  5. Kwok, A. O., Stewart, J. P., Hashash, Y. M., Matasovic, N., Pyke, R., Wang, Z. and Yang, Z. (2007), "Use of exact solutions of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures", Journal of Geotechnical and Geoenvironmental Engineering, Vol.133, No.11, pp.1385-1398. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1385)
  6. Kuhlemeyer, R. L. and Lysmer, J. (1973), "Finite element method accuracy for wave propagation problems", Journal of Soil Mechanics & Foundations Div, Vol.99, No. Tech Rpt.
  7. MOLIT (2016), Korean building code (in Korean).
  8. MOLIT (2016), Korean design standard of Dam (in Korean).
  9. MPSS (2017), Common application of seismic design criteria (in Korean).
  10. Newmark, N. M. (1965), "Effects of earthquakes on dams and embankments", Geotechnique, Vol.15, No.2, pp.139-160. https://doi.org/10.1680/geot.1965.15.2.139
  11. IBM Corp. (2016), IBM SPSS Statistics for Windows, Version 24.0., New York.
  12. Park, D., Kim, T. G., Ahn, J. K. and Park, I. J. (2013), "Amplification characteristics of mountain slope", Journal of KOSHAM, Vol.13, No.2, pp.117-123.
  13. Sawada, Y. and Takahashi, T. (1975), "Study on the material properties and the earthquake behaviors of rockfill dams", Proc. of 4th Japan Earthquake Engineering Symposium, Tokyo, pp.695-702 (in Japanese).
  14. Swaisgood, J. R. (2003), "Embankment dam deformations caused by earthquakes", Proc. of 2003 Pacific Conference on Earthquake Engineering, Christchurch NZ.
  15. Timothy D. A., Robert B. D., Jonathan P. S., Emel, S., Walter J. S., Brian S. C., Katie E. W., Robert W. G., Albert R. K., David M. B., Tadahiro, K. and Jennifer L. D. (2014), "NGA-West2 Database", Earthquake Spectra: August 2014, Vol.30, No.3, pp.989-1005. https://doi.org/10.1193/070913EQS197M